Виды воздействия ионизирующего излучения. Воздействие ионизирующего излучения на ткани организма

ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ, ИХ ПРИРОДА И ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА


Радиация и её разновидности

Ионизирующие излучения

Источники радиационной опасности

Устройство ионизирующих источников излучения

Пути проникновения излучения в организм человека

Меры ионизирующего воздействия

Механизм действия ионизирующего излучения

Последствия облучения

Лучевая болезнь

Обеспечение безопасности при работе с ионизирующими излучениями


Радиация и её разновидности

Радиация – это все виды электромагнитного излучения: свет, радиоволны, энергия солнца и множество иных излучений вокруг нас.

Источниками проникающей радиации, создающими природный фон облучения, являются галактическое и солнечное излучение, наличие радиоактивных элементов в почве, воздухе и материалах, используемых в хозяйственной деятельности, а также изотопов,главным образом,калия, в тканях живого организма. Одним из наиболее весомых естественных источников радиации является радон – газ, не имеющий вкуса и запаха.

Интерес представляет не любая радиация, а ионизирующая, которая, проходя сквозь ткани и клетки живых организмов, способна передавать им свою энергию, разрывая химические связи внутри молекул и вызывая серьёзные изменения в их структуре. Ионизирующее излучение возникает при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.

Ионизирующие излучения

Все ионизирующие излучения делятся на фотонные и корпускулярные.

К фотонному ионизирующему излучению относятся:

а) Y-излучение, испускаемое при распаде радиоактивных изотопов или аннигиляции частиц. Гамма-излучение по своей природе является коротковолновым электромагнитным излучением, т.е. потоком высокоэнергетических квантов электромагнитной энергии, длина волны которых значительно меньше межатомных расстояний, т.е. y < 10 см. Не имея массы, Y-кванты двигаются со скоростью света, не теряя её в окружающей среде. Они могут лишь поглощаться ею или отклоняться в сторону, порождая пары ионов: частица- античастица, причём последнее наиболее значительно при поглощении Y- квантов в среде. Таким образом, Y- кванты при прохождении через вещество передают энергию электронам и, следовательно, вызывают ионизацию среды. Благодаря отсутствию массы, Y- кванты обладают большой проникающей способностью (до 4- 5 км в воздушной среде);

б) рентгеновское излучение, возникающее при уменьшении кинетической энергии заряженных частиц и / или при изменении энергетического состояния электронов атома.

Корпускулярное ионизирующее излучение состоит из потока заряженных частиц (альфа-,бета-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят:

а) нейтроны – единственные незаряженные частицы, образующиеся при некоторых реакциях деления ядер атомов урана или плутония. Поскольку эти частицы электронейтральны, они глубоко проникают во всякое вещество, включая живые ткани. Отличительной особенностью нейтронного излучения является его способность превращать атомы стабильных элементов в их радиоактивные изотопы, т.е. создавать наведённую радиацию, что резко повышает опасность нейтронного излучения. Проникающая способность нейтронов сравнима с Y- излучением. В зависимости от уровня носимой энергии условно различают нейтроны быстрые (обладающие энергией от 0,2 до 20 Мэ В) и тепловые (от 0,25 до 0,5 Мэ В). Это различие учитывается при проведении защитных мероприятий. Быстрые нейтроны замедляются, теряя энергию ионизации, веществами с малым атомным весом (так называемыми водородосодержащими: парафин, вода, пластмассы и др.). Тепловые нейтроны поглощаются материалами, содержащими бор и кадмий (борная сталь, бораль, борный графит, сплав кадмия со свинцом).

Альфа -, бета-частицы и гамма - кванты обладают энергией всего в несколько мегаэлектронвольт, и создавать наведённую радиацию не могут;

б) бета частицы - электроны, испускаемые во время радиоактивного распада ядерных элементов с промежуточной ионизирующей и проникающей способностью (пробег в воздухе до 10-20 м).

в) альфа частицы - положительно заряженные ядра атомов гелия, а в космическом пространстве и атомов других элементов, испускаемые при радиоактивном распаде изотопов тяжёлых элементов – урана или радия. Они обладают малой проникающей способностью (пробег в воздухе - не более 10 см), даже человеческая кожа является для них непреодолимым препятствием. Опасны они лишь при попадании внутрь организма, так как способны выбивать электроны из оболочки нейтрального атома любого вещества, в том числе и тела человека, и превращать его в положительно заряженный ион со всеми вытекающими последствиями, о которых будет сказано далее. Так, альфа частица с энергией 5 МэВ образует 150 000 пар ионов.

Характеристика проникающей способности различных видов ионизирующего излучения

Количественное содержание радиоактивного материала в организме человека или веществе определяется термином «активность радиоактивного источника» (радиоактивность). За единицу радиоактивности в системе СИ принят беккерель (Бк), соответствующий одному распаду в 1 с. Иногда на практике применяется старая единица активности – кюри (Ки). Это активность такого количества вещества, в котором за 1с происходит распад 37 млрд. атомов. Для перевода пользуются зависимостью: 1 Бк = 2,7 х 10 Ки или 1 Ки = 3,7 х 10 Бк.

Каждый радионуклид имеет неизменный, присущий только ему период полураспада (время, необходимое для потери веществом половины активности). Например, у урана-235 он составляет 4 470 лет, тогда как у йода-131 – всего лишь 8 суток.

Источники радиационной опасности

1. Главная причина опасности – радиационная авария. Радиационная авария – потеря управления источником ионизирующего излучения (ИИИ), вызванная неисправностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды. При авариях, вызванных разрушением корпуса реактора или расплавлением активной зоны выбрасываются:

1) Фрагменты активной зоны;

2) Топливо (отходы) в виде высокоактивной пыли, которая может долгое время находиться в воздухе в виде аэрозолей, затем после прохождения основного облака выпадать в виде дождевых (снеговых) осадков, а при попадании в организм вызывать мучительный кашель, иногда по тяжести сходный с приступом астмы;

3) лавы, состоящие из двуокиси кремния, а также расплавленный в результате соприкосновения с горячим топливом бетон. Мощность дозы вблизи таких лав достигает 8000 Р/час и даже пятиминутное пребывание рядом губительно для человека. В первый период после выпадения осадков РВ наибольшую опасность представляет йод-131, являющийся источником альфа- и бэта-излучения. Периоды полувыведения его из щитовидной железы составляют: биологический – 120 суток, эффективный – 7,6. Это требует быстрейшего проведения йодной профилактики всего населения, оказавшегося в зоне аварии.

2. Предприятия по разработке месторождений и обогащению урана. Уран имеет атомный вес 92 и три естественных изотопов: уран-238 (99,3%), уран-235 (0,69%) и уран-234 (0,01%). Все изотопы являются альфа-излучателями с незначительной радиоактивностью (2800кг урана по активности эквивалентны 1 г радия-226). Период полураспада урана-235 = 7,13 х 10 лет. Искусственные изотопы уран-233 и уран-227 имеют период полураспада 1,3 и 1,9 мин. Уран – мягкий металл, по внешнему виду похожий на сталь. Содержание урана в некоторых природных материалах доходит до 60 %, но в большинстве урановых руд оно не превышает 0,05-0,5 %. В процессе добычи при получении 1 тонны радиоактивного материала образуется до 10-15 тыс. тонн отходов, а при переработке от 10 до 100 тыс. тонн. Из отходов (содержащих незначительное количество урана, радия, тория и других радиоактивных продуктов распада) выделяется радиоактивный газ – радон-222, который при вдохе вызывает облучение тканей лёгких. При обогащении руды радиоактивные отходы могут попасть в близлежащие реки и озёра. При обогащении уранового концентрата возможна некоторая утечка газообразного гексафторида урана из конденсационно-испарительной установки в атмосферу. Получаемые при производстве тепловыделяющих элементов некоторые урановые сплавы, стружки, опилки могут воспламеняться во время транспортировки или хранения, в результате в окружающую среду могут быть выброшены значительные количества отходов сгоревшего урана.

3. Ядерный терроризм. Участились случаи кражи ядерных материалов, пригодных для изготовления ядерных боеприпасов даже кустарным способом, а также угрозы вывода из строя ядерных предприятий, кораблей с ядерными установками и АЭС с целью получения выкупа. Опасность ядерного терроризма существует и на бытовом уровне.

4. Испытания ядерного оружия. За последнее время достигнута миниатюризация ядерных зарядов для испытаний.

Устройство ионизирующих источников излучения

По устройству ИИИ бывают двух типов – закрытые и открытые.

Закрытые источники помещены в герметизированные контейнеры и представляют опасность лишь в случае отсутствия должного контроля за их эксплуатацией и хранением. Свою лепту вносят и воинские части, передающие списанные приборы в подшефные учебные заведения. Утери списанного, уничтожение за ненадобностью, кражи с последующей миграцией. Например, в Братске на заводе стройконструкций, ИИИ, заключенный в свинцовую оболочку, хранился в сейфе вместе с драгоценными металлами. И когда грабители взломали сейф, то они решили, что эта массивная болванка из свинца – тоже драгоценная. Украли её, а затем честно поделили, распилив пополам свинцовую «рубашку» и заточенную в ней ампулу с радиоактивным изотопом.

Работа с открытыми ИИИ может привести к трагическим последствиям при незнании или нарушении соответствующих инструкций по правилам обращения с данными источниками. Поэтому прежде, чем начинать любую работу с использованием ИИИ, необходимо тщательно изучить все должностные инструкции и положения техники безопасности и неукоснительно выполнять их требования. Эти требования изложены в «Санитарных правилах обращения с радиоактивными отходами (СПО ГО-85)». Предприятие «Радон» по заявкам производит индивидуальный контроль лиц, территорий, объектов, проверку, дозировку и ремонт приборов. Работы в области обращения ИИИ, средств радиационной защиты, добычи, производства, транспортирования, хранения, использования, обслуживания, утилизации, захоронения производятся только на основании лицензии.

Пути проникновения излучения в организм человека

Чтобы правильно понимать механизм радиационных поражений, необходимо иметь чёткое представление о существовании двух путей, по которым излучение проникает в ткани организма и воздействует на них.

Первый путь – внешнее облучение от источника, расположенного вне организма (в окружающем пространстве). Это облучение может быть связано с рентгеновскими и гамма лучами, а также некоторыми высокоэнергетическими бета частицами, способными проникать в поверхностные слои кожи.

Второй путь – внутреннее облучение, вызванное попаданием радиоактивных веществ внутрь организма следующими способами:

В первые дни после радиационной аварии наиболее опасны радиоактивные изотопы йода, поступающие в организм с пищей и водой. Весьма много их в молоке, что особенно опасно для детей. Радиоактивный йод накапливается главным образом в щитовидной железе, масса которой составляет всего 20 г. Концентрация радионуклидов в этом органе может быть в 200 раз выше, чем в других частях человеческого организма;

Через повреждения и порезы на коже;

Абсорбция через здоровую кожу при длительном воздействии радиоактивных веществ (РВ). В присутствии органических растворителей (эфир, бензол, толуол, спирт) проницаемость кожи для РВ увеличивается. Причем некоторые РВ, поступившие в организм через кожу, попадают в кровеносное русло и, в зависимости от их химических свойств, поглощаются и накапливаются в критических органах, что приводит к получению высоких локальных доз радиации. Например, растущие кости конечностей хорошо усваивают радиоактивный кальций, стронций, радий, почки – уран. Другие химические элементы, такие как натрий и калий, будут распространяться по всему телу более или менее равномерно, так как они содержатся во всех клетках организма. При этом наличие в крови натрия-24 означает, что организм дополнительно подвергся нейтронному облучению (т.е. цепная реакция в реакторе в момент облучения не была прервана). Лечить больного, подвергшегося нейтронному облучению, особенно тяжело, поэтому необходимо проводить определение наведенной активности биоэлементов организма (Р, Sи др.);

Через лёгкие при дыхании. Попадание твердых радиоактивных веществ в лёгкие зависит от степени дисперсности этих частиц. Из проводившихся над животными испытаний установлено, что частицы пыли размером менее 0.1 микрона ведут себя так же как и молекулы газов. При вдохе они попадают с воздухом в лёгкие, а при выдохе вместе с воздухом удаляются. В лёгких может оставаться лишь незначительная часть твёрдых частиц. Крупные частицы размером более 5 микрон задерживаются носовой полостью. Инертные радиоактивные газы (аргон, ксенон, криптон и др.), попавшие через лёгкие в кровь, не являются соединениями, входящими в состав тканей, и со временем удаляются из организма. Не задерживаются в организме длительное время и радионуклиды, однотипные с элементами, входящими в состав тканей и употребляемые человеком с пищей (натрий, хлор, калий и др.). Они со временем полностью удаляются из организма. Некоторые радионуклиды (например, отлагающиеся в костных тканях радий, уран, плутоний, стронций, иттрий, цирконий) вступают в химическую связь с элементами костной ткани и с трудом выводятся из организма. При проведении медицинского обследования жителей районов, пострадавших от аварии на Чернобыльской АЭС, во Всесоюзном гематологическом центре АМН было обнаружено, что при общем облучении организма дозой в 50 рад отдельные его клетки оказались облученными дозой в 1 000 и более рад. В настоящее время для различных критических органов разработаны нормативы, определяющие предельно допустимое содержание в них каждого радионуклида. Эти нормы изложены в разделе 8 «Числовые значения допустимых уровней» Норм радиационной безопасности НРБ – 76/87.

Внутреннее облучение является более опасным, а его последствия более тяжёлыми по следующим причинам:

Резко увеличивается доза облучения, определяемая временем пребывания радионуклида в организме (радий-226 или плутоний-239 в течение всей жизни);

Практически бесконечно мало расстояние до ионизируемой ткани (так называемое, контактное облучение);

В облучении участвуют альфа частицы, самые активные и поэтому самые опасные;

Радиоактивные вещества распространяются не равномерно по всему организму, а избирательно, концентрируются в отдельных (критических) органах, усиливая локальное облучение;

Невозможно использовать какие-либо меры защиты, применяемые при внешнем облучении: эвакуацию, средства индивидуальной защиты (СИЗ) и др.

Меры ионизирующего воздействия

Мерой ионизирующего воздействия внешнего излучения является экспозиционная доза, определяемая по ионизации воздуха. За единицу экспозиционной дозы (Дэ) принято считать рентген (Р) – количество излучения, при котором в 1 куб.см. воздуха при температуре 0 С и давлении 1 атм образуются 2,08 х 10 пар ионов. Согласно руководящим документам Международной компании по радиологическим единицам (МКРЕ) РД – 50-454-84 после 1 января 1990 г. использовать такие величины, как экспозиционная доза и её мощность, в нашей стране не рекомендуется (принято, что экспозиционная доза есть поглощённая доза в воздухе). Большая часть дозиметрической аппаратуры в РФ имеет градуировку в рентгенах, рентген / часах, и от этих единиц пока не отказываются.

Мерой ионизирующего воздействия внутреннего облучения является поглощённая доза. За единицу поглощенной дозы принят рад. Это доза излучения, переданная массе облучаемого вещества в 1 кг и измеряемая энергией в джоулях любого ионизирующего излучения. 1 рад = 10 Дж/кг. В системе СИ единицей поглощённой дозы является грей (Гр), равный энергии в 1 Дж/кг.

1 Гр = 100 рад.

1 рад = 10 Гр.

Для перевода количества ионизирующей энергии в пространстве (экспозиционная доза) в поглощённую мягкими тканями организма применяют коэффициент пропорциональности К = 0,877, т.е.:

1 рентген = 0,877 рад.

В связи с тем, что различные виды излучений обладают разной эффективностью (при равных затратах энергии на ионизацию производят различное воздействие), введено понятие «эквивалентная доза». Единица её измерения – бэр. 1 бэр – это доза излучения любого вида, воздействие которой на организм эквивалентно действию 1 рад гамма излучения. Поэтому при оценке общего эффекта воздействия радиационного излучения на живые организмы при суммарном облучении всеми видами излучений учитывается коэффициент качества (Q), равный 10 для нейтронного излучения (нейтроны примерно в 10 раз эффективнее в плане радиационного поражения) и 20 – для альфа излучения. В системе СИ единицей эквивалентной дозы является зиверт (Зв), равный 1 Гр х Q.

Наряду с величиной энергии, видом облучения, материалом и массой органа важным фактором является, так называемый биологический период полураспада радиоизотопа – продолжительность времени, необходимого для выведения (с потом, слюной, мочой, калом и др.) из организма половины радиоактивного вещества. Уже через 1-2 часа после попадания РВ в организм они обнаруживаются в его выделениях. Сочетание физического периода полураспада с биологическим даёт понятие «эффективный период полураспада» - наиболее важный в определении результирующей величины облучения, которому подвергается организм, особенно критические органы.

Наряду с понятием «активность» существует понятие «наведённая активность» (искусственная радиоактивность). Она возникает при поглощении медленных нейтронов (продуктов ядерного взрыва или ядерной реакции), ядрами атомов нерадиоактивных веществ и превращении их в радиоактивные калий-28 и натрий-24, образующиеся, в основном, в грунте.

Таким образом, степень, глубина и форма лучевых поражений, развивающихся у биологических объектов (в том числе у человека) при воздействии на них радиации, зависят от величины поглощённой энергии излучения (дозы).

Механизм действия ионизирующего излучения

Принципиальной особенностью действия ионизирующего излучения является его способность проникать в биологические ткани, клетки, субклеточные структуры и, вызывая одномоментную ионизацию атомов, за счёт химических реакций повреждать их. Ионизирована может быть любая молекула, а отсюда все структурно-функциональные разрушения в соматических клетках, генетические мутации, воздействия на зародыш, болезнь и смерть человека.

Механизм такого воздействия заключается в поглощении энергии ионизации организмом и разрыве химических связей его молекул с образованием высокоактивных соединений, так называемых свободных радикалов.

Организм человека на 75% состоит из воды, следовательно, решающее значение в этом случае будет иметь косвенное воздействие радиации через ионизацию молекулы воды и последующие реакции со свободными радикалами. При ионизации молекулы воды образуется положительный ион Н О и электрон, который, потеряв энергию, может образовать отрицательный ион Н О. Оба эти иона являются неустойчивыми и распадаются на пару стабильных ионов, которые рекомбинируют (восстанавливаются) с образованием молекулы воды и двух свободных радикалов ОН и Н, отличающихся исключительно высокой химической активностью. Непосредственно или через цепь вторичных превращений, таких как образование перекисного радикала (гидратного оксида воды), а затем перекиси водорода Н О и других активных окислителей группы ОН и Н, взаимодействуя с молекулами белков, они ведут к разрушению ткани в основном за счет энергично протекающих процессов окисления. При этом одна активная молекула с большой энергией вовлекает в реакцию тысячи молекул живого вещества. В организме окислительные реакции начинают превалировать над восстановительными. Наступает расплата за аэробный способ биоэнергетики – насыщение организма свободным кислородом.

Воздействие ионизирующего излучения на человека не ограничивается изменением структуры молекул воды. Меняется структура атомов, из которых состоит наш организм. В результате происходит разрушение ядра, клеточных органелл и разрыв наружной мембраны. Так как основная функция растущих клеток – способность к делению, то утрата её приводит к гибели. Для зрелых неделящихся клеток разрушение вызывает потерю тех или иных специализированных функций (выработку определённых продуктов, распознавание чужеродных клеток, транспортные функции и тд.). Наступает радиационно индуцированная гибель клеток, которая в отличие от физиологической гибели необратима, так как реализация генетической программы терминальной дифференцировки в этом случае осуществляется на фоне множественных изменений нормального течения биохимических процессов после облучения.

Кроме того, дополнительное поступление энергии ионизации в организм нарушает сбалансированность энергетических процессов, происходящих в нём. Ведь наличие энергии в органических веществах зависит в первую очередь не от их элементарного состава, а от строения, расположения и характера связей атомов, т.е. тех элементов, которые легче всего поддаются энергетическому воздействию.

Последствия облучения

Одно из наиболее ранних проявлений облучения – массовая гибель клеток лимфоидной ткани. Образно говоря, эти клетки первыми принимают на себя удар радиации. Гибель лимфоидов ослабляет одну из основных систем жизнеобеспечения организма – иммунную систему, так как лимфоциты – такие клетки, которые способны реагировать на появление чужеродных для организма антигенов выработкой строго специфических антител к ним.

В результате воздействия энергии радиационного излучения в малых дозах в клетках происходят изменения генетического материала (мутации), угрожающие их жизнеспособности. Как следствие наступает деградация (повреждение) ДНК хроматина (разрывы молекул, повреждения), которые частично или полностью блокируют или извращают функцию генома. Происходит нарушение репарации ДНК – способности её к восстановлению и залечиванию повреждений клеток при повышении температуры тела, воздействии химических веществ и пр.

Генетические мутации в половых клетках оказывают влияние на жизнь и развитие будущих поколений. Этот случай характерен, например, если человек подвергся воздействию небольших доз радиации во время экспозиции в медицинских целях. Существует концепция – при получении дозы в 1 бэр предыдущим поколением она даёт дополнительно в потомстве 0.02 % генетических аномалий, т.е. у 250 младенцев на миллион. Эти факты и многолетние исследования данных явлений привели ученых к выводу, что безопасных доз радиации не существует.

Воздействие ионизирующих излучений на гены половых клеток может вызвать вредные мутации, которые будут передаваться из поколения в поколение, увеличивая «мутационный груз» человечества. Опасными для жизни являются условия, увеличивающие «генетическую нагрузку» вдвое. Такой удваивающей дозой является, по выводам научного комитета ООН по атомной радиации, доза в 30 рад при остром облучении и 10 рад при хроническом (в течение репродуктивного периода). С ростом дозы повышается не тяжесть, а частота возможного проявления.

Мутационные изменения происходят и в растительных организмах. В лесах, подвергшихся выпадению радиоактивных осадков под Чернобылем, в результате мутации возникли новые абсурдные виды растений. Появились ржаво-красные хвойные леса. В расположенном недалеко от реактора пшеничном поле через два года после аварии ученые обнаружили около тысячи различных мутаций.

Влияние на зародыш и плод вследствие облучения матери в период беременности. Радиочувствительность клетки меняется на разных этапах процесса деления (митоза). Наиболее чувствительна клетка в конце покоя и начале первого месяца деления. Особенно чувствительна к облучению зигота – эмбриональная клетка, образующаяся после слияния сперматозоида с яйцом. При этом развитие зародыша в этот период и влияние на него радиационного, в том числе и рентгеновского, облучения можно разделить на три этапа.

1-й этап – после зачатия и до девятого дня. Только что сформировавшийся зародыш под воздействием радиации погибает. Смерть в большинстве случаев остается незамеченной.

2-й этап – с девятого дня по шестую неделю после зачатия. Это – период формирования внутренних органов и конечностей. При этом под воздействием дозы облучения в 10 бэр у зародыша появляется целый спектр дефектов – расщепление нёба, остановка развития конечностей, нарушение формирования мозга и др. Одновременно возможна задержка роста организма, что выражается в уменьшении размеров тела при рождении. Результатом облучения матери в этот период беременности также может быть смерть новорожденного в момент родов или спустя некоторое время после них. Однако, рождение живого ребёнка с грубыми дефектами, вероятно, самое большое несчастье, гораздо худшее, чем смерть эмбриона.

3-й этап – беременность после шести недель. Дозы радиации, полученные матерью, вызывают стойкое отставание организма в росте. У облученной матери ребёнок при рождении имеет размеры меньше нормы и остается ниже среднего роста на всю жизнь. Возможны патологические изменения в нервной, эндокринной системах и т.д. Многие специалисты-радиологи предполагают, что большая вероятность рождения неполноценного ребенка служит основанием для прерывания беременности, если доза, полученная эмбрионом в течение первых шести недель после зачатия, превышает 10 рад. Такая доза вошла в законодательные акты некоторых скандинавских стран. Для сравнения, при рентгеноскопии желудка основные участки костного мозга, живот, грудная клетка получают дозу излучения в 30-40 рад.

Иногда возникает практическая проблема: женщина проходит серию сеансов рентгенографии, включающих снимки желудка и органов таза, а впоследствии обнаруживается, что она беременна. Ситуация усугубляется, если облучение произошло в первые недели после зачатия, когда беременность может оставаться незамеченной. Единственное решение данной проблемы – не подвергать женщину облучению в указанный период. Этого можно достичь в том случае, если женщина репродуктивного возраста будет проходить рентгенографию желудка или брюшной полости только в течение первых десяти дней после начала менструального периода, когда нет сомнений в отсутствии беременности. В медицинской практике это называется правилом «десяти дней». При неотложной ситуации рентгеновские процедуры не могут быть перенесены на недели или месяцы, однако со стороны женщины будет благоразумным рассказать врачу перед проведением рентгенографии о своей возможной беременности.

По степени чувствительности к ионизирующему излучению клетки и ткани человеческого организма неодинаковы.

К особо чувствительным органам относятся семенники. Доза в 10-30 рад может снизить сперматогенез в течение года.

Высокой чувствительностью к облучению обладает иммунная система.

В нервной системе наиболее чувствительной оказалась сетчатка глаза, так как при облучении наблюдалось ухудшение зрения. Нарушения вкусовой чувствительности наступали при лучевой терапии грудной клетки, а повторные облучения дозами 30-500 Р снижали тактильную чувствительность.

Изменения в соматических клетках могут способствовать возникновению рака. Раковая опухоль возникает в организме в тот момент, когда соматическая клетка, выйдя из-под контроля организма, начинает быстро делиться. Первопричиной этого являются вызванные многократными или сильным разовым облучением мутации в генах, приводящие к тому, что раковые клетки теряют способность даже в случае нарушения равновесия погибать физиологической, а точнее программированной смертью. Они становятся как бы бессмертными, постоянно делясь, увеличиваясь в количестве и погибая лишь от недостатка питательных веществ. Так происходит рост опухоли. Особенно быстро развивается лейкоз (рак крови) – болезнь, связанная с избыточным появлением в костном мозге, а затем и в крови неполноценных белых клеток – лейкоцитов. Правда, в последнее время выяснилось, что связь между радиацией и заболеванием раком более сложная, чем предполагалось ранее. Так, в специальном докладе японско-американской ассоциации ученых сказано, что только некоторые виды рака: опухоли молочной и щитовидной желёз, а также лейкемия – развиваются в результате радиационного поражения. Причем опыт Хиросимы и Нагасаки показал, что рак щитовидной железы наблюдается при облучении в 50 и более рад. Рак молочной железы, от которого умирают около 50% заболевших, наблюдается у женщин, многократно подвергавшихся рентгенографическим обследованиям.

Характерным для радиационных поражений является то, что лучевые травмы сопровождаются тяжелыми функциональными расстройствами, требуют сложного и длительного (более трёх месяцев) лечения. Жизнеспособность облученных тканей значительно снижается. Кроме того, через много лет и десятилетий после получения травмы возникают осложнения. Так, наблюдались случаи возникновения доброкачественных опухолей через 19 лет после облучения, а развитие лучевого рака кожи и молочной железы у женщин – через 25-27 лет. Нередко травмы обнаруживаются на фоне или после воздействия дополнительных факторов нерадиационной природы (диабет, атеросклероз, гнойная инфекция, термические или химические травмы в зоне облучения).

Необходимо также учитывать, что люди, пережившую радиационную аварию, испытывают дополнительный стресс в течение нескольких месяцев и даже лет после неё. Такой стресс может включить биологический механизм, который приводит к возникновению злокачественных заболеваний. Так, в Хиросиме и Нагасаки крупная вспышка заболеваний раком щитовидной железы наблюдалась спустя 10 лет после атомной бомбардировки.

Исследования, проведённые радиологами на основании данных Чернобыльской аварии, свидетельствуют о снижении порога последствий от воздействия облучения. Так, установлено, что облучение в 15 бэр может вызвать нарушения в деятельности иммунной системы. Уже при получении дозы в 25 бэр у ликвидаторов аварии наблюдалось снижение в крови лимфоцитов – антител к бактериальным антигенам, а при 40 бэр увеличивается вероятность возникновения инфекционных осложнений. При воздействии постоянного облучения дозой от 15 до 50 бэр часто отмечались случаи неврологических расстройств, вызванных изменениями в структурах головного мозга. Причём эти явления наблюдались в отдалённые сроки после облучения.

Лучевая болезнь

В зависимости от дозы и времени облучения наблюдаются три степени заболевания: острая, подострая и хроническая. В очагах поражения (при получении высоких доз) возникает, как правило, острая лучевая болезнь (ОЛБ).

Различают четыре степени ОЛБ:

Лёгкая (100 – 200 рад). Начальный период – первичная реакция как и при ОЛБ всех других степеней – характеризуется приступами тошноты. Появляются головная боль, рвота, общее недомогание, незначительное повышение температуры тела, в большинстве случаев – анорексия (отсутствие аппетита, вплоть до отвращения к пище), возможны инфекционные осложнения. Первичная реакция возникает через 15 – 20 минут после облучения. Её проявления постепенно исчезают через несколько часов или суток, а могут вообще отсутствовать. Затем наступает скрытый период, так называемый период мнимого благополучия, продолжительность которого обусловливается дозой облучения и общим состоянием организма (до 20 суток). За это время эритроциты исчерпывают свой срок жизни, переставая подавать кислород клеткам организма. ОЛБ лёгкой степени излечима. Возможны негативные последствия – лейкоцитоз крови, покраснения кожи, снижение работоспособности у 25% поражённых через 1,5 – 2 часа после облучения. Наблюдается высокое содержание гемоглобина в крови в течение 1 года с момента облучения. Сроки выздоровления – до трёх месяцев. Большое значение при этом имеют личностная установка и социальная мотивация пострадавшего, а также его рациональное трудоустройство;

Средняя (200 – 400 рад). Короткие приступы тошноты, проходящие через 2-3 дня после облучения. Скрытый период – 10-15 суток (может отсутствовать), в течение которого лейкоциты, вырабатываемые лимфатическими узлами, погибают и прекращают отторгать попадающую в организм инфекцию. Тромбоциты перестают свёртывать кровь. Всё это – результат того, что убитые радиацией костный мозг, лимфатические узлы и селезёнка не вырабатывают новые эритроциты, лейкоциты и тромбоциты на смену отработавшим. Развиваются отёк кожи, пузыри. Такое состояние организма, получившее название «костномозговой синдром», приводит 20% поражённых к смерти, которая наступает в результате поражения тканей кроветворных органов. Лечение заключается в изоляции больных от внешней среды, введении антибиотиков и переливании крови. Молодые и пожилые мужчины более подвержены заболеванию ОЛБ средней степени, нежели мужчины среднего возраста и женщины. Потеря трудоспособности наступает у 80% поражённых через 0,5 – 1 час после облучения и после выздоровления долгое время остаётся сниженной. Возможно развитие катаракты глаз и местных дефектов конечностей;

Тяжёлая (400 – 600 рад). Симптомы, характерные для кишечно-желудочного расстройства: слабость, сонливость, потеря аппетита, тошнота, рвота, длительный понос. Скрытый период может длиться 1 – 5 суток. Через несколько дней возникают признаки обезвоживания организма: потеря массы тела, истощение и полное обессиливание. Эти явления – результат отмирания ворсинок стенок кишечника, всасывающих питательные вещества из поступающей пищи. Их клетки под воздействием радиации стерилизуются и теряют способность делиться. Возникают очаги прободения стенок желудка, и бактерии поступают из кишечника в кровоток. Появляются первичные радиационные язвы, гнойная инфекция от радиационных ожогов. Потеря трудоспособности через 0,5-1 час после облучения наблюдается у 100% пострадавших. У 70% поражённых смерть наступает через месяц от обезвоживания организма и отравления желудка (желудочно-кишечный синдром), а также от радиационных ожогов при гамма облучении;

Крайне тяжёлая (более 600 рад). В считанные минуты после облучения возникают сильная тошнота и рвота. Понос – 4-6 раз в сутки, в первые 24 часа – нарушение сознания, отёк кожи, сильные головные боли. Данные симптомы сопровождаются дезориентацией, потерей координации движений, затруднением глотания, расстройством стула, судорожными припадками и в конечном итоге наступает смерть. Непосредственная причина смерти – увеличение количества жидкости в головном мозге вследствие её выхода из мелких сосудов, что приводит к повышению внутричерепного давления. Такое состояние получило название «синдром нарушения центральной нервной системы».

Необходимо отметить, что поглощённая доза, вызывающая поражение отдельных частей организма и смерть, превышает смертельную дозу для всего тела. Смертельные дозы для отдельных частей тела следующие: голова – 2000 рад, нижняя часть живота – 3000 рад, верхняя часть живота – 5000 рад, грудная клетка – 10000 рад, конечности – 20000 рад.

Достигнутый на сегодня уровень эффектности лечения ОЛБ считается предельным, так как основан на пассивной стратегии – надежде на самостоятельное выздоровление клеток в радиочувствительных тканях (главным образом костном мозге и лимфатических узлах), на поддержку других систем организма, переливание тромбоцитной массы для предотвращения кровоизлияния, эритроцитарной – для предотвращения кислородного голодания. После этого остаётся только ждать, когда заработают все системы клеточного обновления и ликвидируют гибельные последствия радиационного облучения. Исход болезни определяется к концу 2-3 месяца. При этом могут наступить: полное клиническое выздоровление пострадавшего; выздоровление, при котором его трудоспособность в той или иной мере будет ограниченной; неблагоприятный исход с прогрессированием заболевания или развитием осложнений, приводящих к смерти.

Пересадке здорового костного мозга мешает иммунологический конфликт, который в облучённом организме особенно опасен, так как истощает и без того подорванные силы иммунитета. Российские учёные-радиологи предлагают новый путь лечения больных лучевой болезнью. Если забрать у облучённого часть костного мозга, то в кроветворной системе после этого вмешательства начинаются процессы более раннего восстановления, чем при естественном развитии событий. Извлечённую часть костного мозга помещают в искусственные условия, а затем через определённый срок возвращают в тот же организм. Иммунологического конфликта (отторжения) не происходит.

В настоящее время учёными проводятся работы, и получены первые результаты по применению фармацевтических радиопротекторов, позволяющих человеку переносить дозы облучения, превышающие летальную примерно вдвое. Это – цистеин, цистамин, цистофос и ряд других веществ, содержащих сульфидгидрильные группы (SH) на конце длинной молекулы. Эти вещества, словно «мусорщики», убирают образующиеся свободные радикалы, которые во многом ответственны за усиление окислительных процессов в организме. Однако крупным недостатком указанных протекторов является необходимость введения его в организм внутривенно, так как сульфидгидрильная группа, добавляемая в них для уменьшения токсичности, разрушается в кислой среде желудка и протектор теряет защитные свойства.

Ионизирующая радиация имеет негативное воздействие также на жиры и липоеды (жироподобные вещества), содержащиеся в организме. Облучение нарушает процесс эмульгирования и продвижения жиров в области криптального отдела слизистой оболочки кишечника. В результате в просвет кровеносных сосудов попадают капли неэмульгированного и грубо эмульгированного жира, усваиваемого организмом.

Повышение окисления жирных кислот в печени приводит при инсулиновой недостаточности к повышенному кетогенезу печени, т.е. избыток свободных жирных кислот в крови понижает активность инсулина. А это в свою очередь ведёт к широко распространённому сегодня заболеванию сахарным диабетом.

Наиболее характерными заболеваниями, сопутствующими поражению от облучения, являются злокачественные новообразования (щитовидной железы, органов дыхания, кожи, кроветворных органов), нарушения обмена веществ и иммунитета, болезни органов дыхания, осложнения течения беременности, врождённые аномалии, психические расстройства.

Восстановление организма после облучения – процесс сложный, и протекает он неравномерно. Если восстановление эритроцитов и лимфоцитов в крови начинается через 7 – 9 месяцев, то восстановление лейкоцитов – через 4 года. На длительность этого процесса оказывают влияние не только радиационные, но и психогенные, социально-бытовые, профессиональные и другие факторы пострадиационного периода, которые можно объединить в одно понятие «качество жизни» как наиболее ёмко и полно выражающее характер взаимодействия человека с биологическими факторами среды, социальными и экономическими условиями.

Обеспечение безопасности при работе с ионизирующими излучениями

При организации работ используются следующие основные принципы обеспечения радиационной безопасности: выбор или уменьшение мощности источников до минимальных величин; сокращение времени работы с источниками; увеличение расстояния от источника до работающего; экранирование источников излучения материалами, поглощающими или ослабляющими ионизирующие излучения.

В помещениях, где проводится работа с радиоактивными веществами и радиоизотопными приборами, ведётся контроль за интенсивностью различных видов излучения. Эти помещения должны быть изолированы от других помещений и оснащены приточно-вытяжной вентиляцией. Другими коллективными средствами защиты от ионизирующего излучения в соответствии с ГОСТ 12.4.120 являются стационарные и передвижные защитные экраны, специальные контейнеры для транспортировки и хранения источников излучения, а также для сбора и хранения радиоактивных отходов, защитные сейфы и боксы.

Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Защита от альфа излучения достигается применением оргстекла толщиной несколько миллиметров. Для защиты от бэта-излучения экраны изготовляют из алюминия или оргстекла. От нейтронного излучения защищает вода, парафин, бериллий, графит, соединения бора, бетон. От рентгеновских и гамма-излучений защищают свинец и бетон. Для смотровых окон используют свинцовое стекло.

При работе с радионуклидами следует применять спецодежду. В случае загрязнения рабочего помещения радиоактивными изотопами поверх хлопчатобумажного комбинезона следует надевать пленочную одежду: халат, костюм, фартук, брюки, нарукавники.

Пленочная одежда изготавливается из пластиков или резиновых тканей, легко очищаемых от радиоактивного загрязнения. В случае применения пленочной одежды необходимо предусмотреть возможность подачи воздуха под костюм.

В комплекты спецодежды входят респираторы, пневмошлемы и другие средства индивидуальной защиты. Для защиты глаз следует применять очки со стеклами, содержащими фосфат вольфрама или свинец. При использовании индивидуальных средств защиты необходимо строго соблюдать последовательность их надевания и снятия, и дозиметрического контроля.

Степень воздействия ионизирующих излучении на организм человека зависит от дозы излучения, ее мощности, плотности ионизации излучения, вида облучения, продолжительности воздействия, индивидуальной чувствительности, физиологического состояния организма и др.Под влиянием ионизирующих излучений в живой ткани , как и в любой среде, поглощается энергия и возникают возбуждение и ионизация атомов облучаемого вещества. В результате возникают первичные физико-химические процессы в молекулах живых клеток и окружающего их субстрата и как следствие - нарушение функций целого организма.Первичные эффекты на клеточном уровне проявляются в виде расщепления молекулы белка, окисления их радикалами ОН и Н, разрыва наименее прочных связей, а также повреждения механизма митоза и хромосомного аппарата, блокирования процессов обновления и дифференцировки клеток.

Наиболее чувствительными к действию радиации являются клетки постоянно обновляющихся тканей и органов (костный мозг, половые железы, селезенка и др.).

Эти изменения на клеточном уровне и гибель клеток могут приводить к нарушению функций отдельных органов и систем, межорганных связей, нарушению нормальной жизнедеятельности организма и к его гибели.

Облучение организма может быть внешним , когда источник излучения находится вне организма, ивнутренним - при попадании радиоактивного вещества (радионуклидов) внутрь организма через пищеварительный тракт, органы дыхания и через кожу.

При внешнем облучении наиболее опасными являются гамма-, нейтронное и рентгеновское излучение. Альфа- и бета-частицы из-за их незначительной проникающей способности вызывают в основном кожные поражения.

Внутреннее облучение опасно тем, что оно вызывает на различных органах долго незаживающие язвы.Облучение людей ионизирующими излучениями может привести к соматическим, сомато-стохастическим и генетическим последствиям .

Соматические эффекты проявляются в виде острой или хронической лучевой болезни всего организма, а также в виде локальных лучевых повреждений.

Сомато-стохастические эффекты проявляются в виде сокращения продолжительности жизни, злокачественные изменения кровообразующих клеток (лейкозы), опухоли различных органов и клеток. Это отдаленные последствия.

Генетические эффекты проявляются в последующих поколениях в виде генных мутаций как результат действия облучения на половые клетки при уровнях дозы, не опасных данному индивиду.

Острая лучевая болезнь характеризуется цикличностью протекания со следующими периодами:

    период первичной реакции;

    скрытый период; период формирования болезни; восстановительный период; период отдаленных последствий и исходов заболевания.

Хроническая лучевая болезнь формируется постепенно при длительном и систематическом облучении дозами, превышающими допустимые при внешнем и внутреннем облучении.Хроническая болезнь может быть легкой (I ступень), средней (II ступень) и тяжелой (III ступень).

Первая ступень лучевой болезни проявляется в виде незначительной головной боли, вялости, слабости, нарушения сна и аппетита и др.

Средняя или вторая ступень характеризуется усилением указанных симптомов и нервно-регуляторных нарушений с появлением функциональной недостаточности пищеварительных желез, сердечно-сосудистой и нервной систем, нарушением некоторых обменных процессов, стойкой лейко- и тромбоцитопенией.

При тяжелой степени , кроме того, развивается анемия, появляется резкая лейко- и тромбопения, возникают атрофические процессы в слизистой желудочно-кишечного тракта и др. (изменения в центральной нервной системе, выпадение волос).

Отдаленные последствия лучевой болезни проявляются в повышенной предрасположенности организма к злокачественным опухолям и болезням кроветворной системы.

Опасность радионуклидов, попавших внутрь организма, обусловливается рядом причин , - способностью некоторых из них избирательно накапливаться в отдельных органах, увеличением времени облучения до выведения нуклида из органа и его радиоактивною распада, ростом опасности высокоионизирующих альфа-и бета-частиц, которые малоэффективны при внешнем облучении.

Критические органы подразделяют на три группы :

I- все тело, репродуктивные органы (гонады), красный костный мозг;

II - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталик глаза;

III- костная ткань, кожный покров, руки, предплечья, ступни ног.

Воздействие радиации на человека зависит от количества энергии ионизирующего излучения, которая поглощается тканями человека. Количество энергии, которая поглощается единицей массы ткани, называется поглощенной дозой . Единицей измерения поглощенной дозы является грей (1 Гр= 1 Дж/кг). Часто поглощенную дозу измеряют в радах (1 Гр = 100 рад).

Однако не только поглощенная доза определяет воздействие радиации на человека. Биологические последствия зависят от вида радиоактивного излучения. Например, альфа-излучение в 20 раз более опасно, чем гамма- или бета-излучение.

Биологическая опасность излучения определяется коэффициентом качества К. При умножении поглощенной дозы на коэффициент качества излучения получается доза, определяющая опасность излучения для человека, которая получила название эквивалентной.

Эквивалентная доза имеет специальную единицу измерения — зиверт (Зв). Часто для измерения эквивалентной дозы используется более мелкая единица — бэр (биологический эквивалент рада), 1 Зв = 100 бэр. Итак, основными параметрами радиации являются следующие (табл. 1).

Таблица. 1. Основные параметры радиации

Экспозиционная и эквивалентная дозы радиации

Для количественной оценки ионизирующего действия рентгеновского и гамма-излучения в сухом атмосферном воздухе используется понятие «экспозиционная доза» — отношение полного заряда ионов одного знака, возникающих в малом объеме воздуха, к массе воздуха в этом объеме. За единицу этой дозы принимают кулон на килограмм (Кл/кг). Применяется также внесистемная единица — рентген (Р).

Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой и измеряется в системе СИ в Грэях (Гр). Грэй - доза излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

Эта доза не учитывает, какой вид излучения воздействовал на организм человека. Если принять во внимание этот факт, то дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма. Пересчитанную таким образом дозу называют эквивалентной дозой: ее измеряют в системе СИ в единицах, называемых зивертами (Зв).

Доза эффективная — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентной дозы в органе на соответствующий взвешивающий коэффициент для данного органа или ткани. Эта доза также измеряется в зивертах.

Специальная единица эквивалентной дозы - бэр - поглощенная доза любого вида излучения, которая вызывает равный биологический эффект с дозой в 1 рад рентгеновского излучения. Рад - специальная единица поглощенной дозы зависит от свойств излучения и поглощающей среды.

Поглощенная, эквивалентная, эффективная и экспозиционная дозы, отнесенные к единице времени, называются мощностью соответствующих доз.

Условная связь системных единиц:

100 Рад = 100 Бэр = 100 Р = 13 В = 1 Гр.

Биологическое действие излучения зависит от числа образованных пар ионов или от связанной с ним величины — поглощенной энергии.

Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры различных соединений. Изменение химического состава значительного числа молекул приводит к гибели клеток.

Под влиянием излучений в живой ткани происходит расщепление воды на атомарный водород Н и гидроксильную группу ОН , которые, обладая высокой активностью, вступают в соединение с другими молекулами ткани и образуют новые химические соединения, не свойственные здоровой ткани. В результате нормальное течение биохимических процессов и обмен веществ нарушается.

Под влиянием ионизирующих излучений в организме происходят торможение функций кроветворных органов, нарушение нормальной свертываемости крови и увеличение хрупкости кровеносных сосудов, расстройство деятельности желудочно-кишечного тракта, истощение организма, снижение сопротивляемости организма инфекционным заболеваниям, увеличение числа лейкоцитов (лейкоцитоз), раннее старение и др.

Воздействие ионизирующего излучения на организм человека

В организме человека радиация вызывает цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения молекул и атомов в тканях. Важную роль в формировании биологических эффектов играют свободные радикалы Н+ и ОН-, образующиеся в процессе радиолиза воды (в организме содержится до 70 % воды). Обладая высокой химической активностью, они вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, вовлекая в реакции сотни и тысячи молекул, не затронутых излучением, что приводит к нарушению биохимических процессов в организме. Под воздействием радиации нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, нс свойственные организму (токсины). А это в свою очередь влияет на процессы жизнедеятельности отдельных органов и систем организма: нарушаются функции кроветворных органов (красного костного мозга), увеличивается проницаемость и хрупкость сосудов, происходит расстройство желудочно-кишечного тракта, снижается сопротивляемость организма (ослабевает иммунная система человека), происходит его истощение, перерождение нормальных клеток в злокачественные (раковые) и др.

Ионизирующее излучение вызывает поломку хромосом, после чего происходит соединение разорванных концов в новые сочетания. Это приводит к изменению генного аппарата человека. Стойкие изменения хромосом приводят к мутациям, которые отрицательно влияют на потомство.

Перечисленные эффекты развиваются в различные временные промежутки: от секунд до многих часов, дней, лет. Это зависит от полученной дозы и времени, в течение которого она была получена.

Острое лучевое поражение (острая лучевая болезнь) возникает тогда, когда человек в течение нескольких часов или даже минут получает значительную дозу. Принято различать несколько степеней острого лучевого поражения (табл. 2).

Таблица 2. Последствия острого лучевого поражения

Эти градации весьма приблизительны, поскольку зависят от индивидуальных особенностей каждого организма. Например, наблюдались случаи гибели людей и при дозах менее 600 бэр, зато в других случаях удавалось спасти людей и при дозах более 600 бэр.

Острая лучевая болезнь может возникнуть у работников или населения при авариях на объектах ЯТЦ, других объектах, использующих ионизирующие излучения, а также при атомных взрывах.

Хроническое облучение (хроническая лучевая болезнь) возникает при облучении человека небольшими дозами в течение длительного времени. При хроническом облучении малыми дозами, в том числе и от радионуклидов, попавших внутрь организма, суммарные дозы могут быть весьма большими. Наносимое организму повреждение, по крайней мере частично, восстанавливается. Поэтому доза в 50 бэр, приводящая при однократном облучении к болезненным ощущениям, при хроническом облучении, растянутом во времени на 10 и более лет, к видимым явлениям не приводит.

Степень воздействия радиации зависит от того, является ли облучение внешним или внутренним (облучение при попадании радионуклида внутрь организма). Внутреннее облучение возможно при вдыхании загрязненного радионуклидами воздуха, при заглатывании зараженной питьевой воды и пищи, при проникновении через кожу. Некоторые радионуклиды интенсивно поглощаются и накапливаются в организме. Например, радиоизотопы кальция, радия, стронция накапливаются в костях, радиоизотопы йода — в щитовидной железе, радиоизотопы редкоземельных элементов повреждают печень, радиоизотопы цезия, рубидия угнетают кроветворную систему, повреждают семенники, вызывают опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие радиоизотопы, т. к. альфа-частица обладает из-за своей большой массы очень высокой ионизирующей способностью, хотя ее проникающая способность не велика. К таким радиоизотопам относятся изотопы плутония, полония, радия, радона.

Нормирование ионизирующего излучения

Гигиеническое нормирование ионизирующего излучения осуществляется по СП 2.6.1-758-99. Нормы радиационной безопасности (НРБ-99). Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

  • персонал — лица, работающие с источниками радиации (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

В табл. 3. приведены основные дозовые пределы облучения. Основные дозовые пределы облучения персонала и населения, указанные в таблице, не включают в себя дозы от природных и медицинских источников ионизирующего излучения, атакже дозы, полученные в результате радиационных аварий. На эти виды облучения в НРБ-99 устанавливаются специальные ограничения.

Таблица 3. Основные дозовые пределы облучения (извлечение из НРБ-99)

* Дозы облучения, как и все остальные допустимые производные уровни персонала группы Б, не должны превышать 1/4 значений для персонала группы А. Далее все нормативные значения для категории персонала приводятся только для группы А.

** Относится к среднему значению в покровном слое толщиной 5 мг/см 2 . На ладонях толщина покровного слоя — 40 мг/см 2 .

Помимо дозовых пределов облучения в НРБ-99 устанавливаются допустимые уровни мощности дозы при внешнем облучении, пределы годового поступления радионуклидов, допустимые уровни загрязнения рабочих поверхностей и т. д., которые являются производными от основных дозовых пределов. Числовые значения допустимого уровня загрязнения рабочих поверхностей приведены в табл. 4.

Таблица 4. Допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, частиц/(см 2 . мин) (извлечение из НРБ-99)

Объект загрязнения

a-активные нуклиды

β-активные нуклиды

отдельные

Неповрежденная кожа, полотенца, слецбелье, внутренняя поверхность лицевых частей средств индивидуальной защиты

Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви

Наружная поверхность дополнительных средств индивидуальной защиты, снимаемой в сан шлюзах

Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования

Поверхности помещений периодического пребывания персонала и находящегося в них оборудования

Для ряда категорий персонала устанавливаются дополнительные ограничения. Например, для женщин в возрасте до 45 лет эквивалентная доза, приходящаяся на нижнюю часть живота, не должна превышать 1 мЗв в месяц.

При установлении беременности женщин из персонала работодатели обязаны переводить их на другую работу, нс связанную с излучением.

Для учащихся в возрасте до 21 года, проходящих обучение с источниками ионизирующего излучения, принимаются дозовые пределы, установленные для лиц из населения.

Проходя через вещество, все виды ионизирующих излучений вызывают ионизацию, возбуждение и распад молекул. Аналогичный эффект наблюдается при облучении человеческого организма. Поскольку основную массу (70%) организма составляет вода, его поражение при облучении осуществляется посредством так называемого косвенного воздействия : сначала излучение поглощается молекулами воды, а затем ионы, возбужденные молекулы и фрагменты распавшихся молекул вступают в химические реакции с биологическими веществами, составляющими организм человека, вызывая их повреждение. В случае облучения нейтронами в организме могут дополнительно образовываться радионуклиды за счет поглощения нейтронов ядрами элементов, содержащихся в организме.

Проникая в организм человека, ионизирующие излучения могут стать причиной тяжелых заболеваний. Физические, химические и биологические превращения вещества при взаимодействии с ним ионизирующих излучений называют радиационным эффектом , который может привести к таким серьезным заболеваниям, как лучевая болезнь, белокровие (лейкемия), злокачественные опухоли, заболевания кожи. Могут возникнуть и генетические последствия, ведущие к наследственным заболеваниям.

Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры соединений. Изменения в химическом составе молекул приводят к гибели клеток. В живой ткани происходит расщепление воды на атомарный водород и гидроксильную группу, которые образуют новые химические соединения, не свойственные здоровой ткани. В результате происшедших изменений нормальное течение биохимических процессов и обмен веществ нарушаются.

Облучение организма человека может быть внешним и внутренним. При внешнем облучении , которое создается закрытыми источниками, опасны излучения, обладающие большой проникающей способностью. Внутреннее облучение происходит, когда радиоактивные вещества попадают в организм при вдыхании воздуха, загрязненного радиоактивными элементами, через пищеварительный тракт (при приеме пищи, загрязненной воды и курении) и в редких случаях через кожу. Внутреннему облучению организм подвергается до тех пор, пока радиоактивное вещество не распадется или не выведется в результате физиологического обмена, поэтому наибольшую опасность представляют радиоактивные изотопы с большим периодом полураспада и интенсивным излучением. Характер повреждений и их тяжесть определяются поглощенной энергией излучения, которая прежде всего зависит от мощности поглощенной дозы, а также от вида излучения, продолжительности облучения, биологических особенностей и размеров облучаемой части тела и индивидуальной чувствительности организма.

При воздействии разных видов радиоактивных излучений на живые ткани определяющими являются проникающая и ионизирующая способности излучения. Проникающая способность излучения характеризуется длиной пробега 1 – толщиной материала, необходимой для поглощения потока. Например, длина пробега альфа-частиц в живой ткани несколько десятков микрометров, а в воздухе 8–9 см. Поэтому при внешнем облучении кожа предохраняет организм от воздействия альфа- и мягкого бета- излучения, проникающая способность которых невелика.

Разные виды излучений при одинаковых значениях поглощенной дозы вызывают разное биологическое поражение.

Заболевания, вызванные радиацией, могут быть острыми и хроническими. Острые поражения наступают при облучении большими дозами за малое время. Очень часто после выздоровления наступает раннее старение, обостряются прежние заболевания. Хронические поражения ионизирующими излучениями бывают как общими, так и местными. Развиваются они всегда в скрытой форме в результате систематического облучения дозами, превышающими предельно допустимую, полученными как при внешнем облучении, так и при попадании в организм радиоактивных веществ.

Опасность лучевого поражения в значительной степени зависит от того, какой орган подвергся облучению. По избирательной способности накапливаться в отдельных критических органах (при внутреннем облучении) радиоактивные вещества можно разделить на три группы:

  • – олово, сурьма, теллур ниобий, полоний и др. распределяются в организме равномерно;
  • – лантан, церий, актиний, торий и др. накапливаются в основном в печени;
  • – уран, радий, цирконий, плутоний, стронций и др. накапливаются в скелете.

Индивидуальная чувствительность организма сказывается при малых дозах облучения (менее 50 мЗв/год), при увеличении дозы она проявляется в меньшей степени. Организм наиболее устойчив к облучению в возрасте 25– 30 лет. Заболевание нервной системы и внутренних органов снижает сопротивляемость организма облучению.

При определении доз облучения основными являются сведения о количественном содержании радиоактивных веществ в теле человека, а не данные о концентрации их в окружающей среде.

Ионизирующим называется излучение, которое, проходя через среду, вызывает ионизацию или возбуждение молекул среды. Ионизирующее излучение, так же как и электромагнитное, не воспринимается органами чувств человека. Поэтому оно особенно опасно, так как человек не знает, что он подвергается его воздействию. Ионизирующее излучение иначе называют радиацией.

Радиация — это поток частиц (альфа-частиц, бета-частиц, нейтронов) или электромагнитной энергии очень высоких частот (гамма- или рентгеновские лучи).

Загрязнение производственной среды веществами, являющимися источниками ионизирующего излучения, называется радиоактивным загрязнением.

Радиоактивное загрязнение — это форма физического (энергетического) загрязнения, связанного с превышением естественного уровня содержания радиоактивных веществ в среде в результате деятельности человека.

Вещества состоят из мельчайших частиц химических элементов — атомов. Атом делим и имеет сложное строение. В центре атома химического элемента находится материальная частица, называемая атомным ядром, вокруг которой вращаются электроны. Большинство атомов химических элементов обладают большой устойчивостью, т. е. стабильностью. Однако у ряда известных в природе элементов ядра самопроизвольно распадаются. Такие элементы называются радионуклидами. Один и тот же элемент может иметь несколько радионуклидов. В этом случае их называют радиоизотопами химического элемента. Самопроизвольный распад радионуклидов сопровождается радиоактивным излучением.

Самопроизвольный распад ядер некоторых химических элементов (радионуклидов) называется радиоактивностью.

Радиоактивное излучение бывает различного вида: потоки частиц с высокой энергией, электромагнитная волна с частотой более 1,5 .10 17 Гц.

Испускаемые частицы бывают различных видов, но чаще всего испускаются альфа-частицы (α-излучение) и бета-частицы (β-излучение). Альфа-частица тяжелая и обладает высокой энергией, это ядро атома гелия. Бета-частица примерно в 7336 раз легче альфа-частицы, но может обладать также высокой энергией. Бета-излучение — это потоки электронов или позитронов.

Радиоактивное электромагнитное излучение (его также называют фотонным излучением) в зависимости от частоты волны бывает рентгеновским (1,5 . 10 17 ...5 . 10 19 Гц) и гамма-излучением (более 5 . 10 19 Гц). Естественное излучение бывает только гамма-излучением. Рентгеновское излучение искусственное и возникает в электронно-лучевых трубках при напряжениях в десятки и сотни тысяч вольт.

Радионуклиды, испуская частицы, превращаются в другие радионуклиды и химические элементы. Радионуклиды распадаются с различной скоростью. Скорость распада радионуклидов называют активностью . Единицей измерения активности является количество распадов в единицу времени. Один распад в секунду носит специальное название беккерель (Бк). Часто для измерения активности используется другая единица — кюри (Ku), 1 Ku = 37 .10 9 Бк. Одним из первых подробно изученных радионуклидов был радий-226. Его изучили впервые супруги Кюри, в честь которых и названа единица измерения активности. Количество распадов в секунду, происходящих в 1 г радия-226 (активность) равна 1 Ku.

Время, в течение которого распадается половина радионуклида, называется периодом полураспада (Т 1/2). Каждый радионуклид имеет свой период полураспада. Диапазон изменения Т 1/2 для различных радионуклидов очень широк. Он изменяется от секунд до миллиардов лет. Например, наиболее известный естественный радионуклид уран-238 имеет период полураспада около 4,5 миллиардов лет.

При распаде уменьшается количество радионуклида и уменьшается его активность. Закономерность, по которой снижается активность, подчиняется закону радиоактивного распада:

где А 0 — начальная активность, А — активность через период времени t .

Виды ионизирующих излучений

Ионизирующие излучения возникают при работе приборов, в основе действия которых лежат радиоактивные изотопы, при работе электровакуумных приборов, дисплеев и т.д.

К ионизирующим излучениям относятся корпускулярные (альфа-, бета-, нейтронные) и электромагнитные (гамма-, рентгеновское) излучения, способные при взаимодействии с веществом создавать заряженные атомы и молекулы-ионы.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или при ядерных реакциях.

Чем больше энергия частиц, тем больше полная ионизация, вызванная ею в веществе. Пробег альфа-частиц, испускаемых радиоактивным веществом, достигает 8-9 см в воздухе, а в живой ткани — нескольких десятков микрон. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обусловливает их низкую проникающую способность и высокую удельную ионизацию, составляющую в воздухе на 1 см пути несколько десятков тысяч пар ионов.

Бета-излучение - поток электронов или позитронов, возникающих при радиоактивном распаде.

Максимальный пробег в воздухе бета-частиц — 1800 см, а в живых тканях — 2,5 см. Ионизирующая способность бета-частиц ниже (нескольких десятков пар на 1 см пробега), а проникающая способность выше, чем альфа-частиц.

Нейтроны, поток которых образует нейтронное излучение, преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов.

При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма- квантов (гамма-излучение): при упругих взаимодействиях возможна обычная ионизация вещества.

Проникающая способность нейтронов в значительной степени зависит от их энергии и состава вещества атомов, с которыми они взаимодействуют.

Гамма-излучение - электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц.

Гамма-излучение обладает большой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение возникает в среде, окружающей источник бета-излучения (в рентгеновских трубках, ускорителях электронов) и представляет собой совокупность тормозного и характеристического излучения. Тормозное излучение — фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц; характеристическое излучение — это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атомов.

Как и гамма-излучение, рентгеновское излучение обладает малой ионизирующей способностью и большой глубиной проникновения.

Источники ионизирующего излучения

Вид радиационного поражения человека зависит от характера источников ионизирующих излучений.

Естественный фон излучения состоит из космического излучения и излучения естественно-распределенных радиоактивных веществ.

Кроме естественного облучения человек подвержен облучению и из других источников, например: при производстве рентгеновских снимков черепа — 0,8-6 Р; позвоночника — 1,6-14,7 Р; легких (флюорография) — 0,2-0,5 Р: грудной клетки при рентгеноскопии — 4,7- 19,5 Р; желудочно-кишечного тракта при рентгеноскопии — 12-82 Р: зубов — 3-5 Р.

Однократное облучение в 25-50 бэр приводит к незначительным скоропроходяшим изменениям в крови, при дозах облучения 80-120 бэр появляются признаки лучевой болезни, но без летального исхода. Острая лучевая болезнь развивается при однократном облучении 200-300 бэр, при этом летальный исход возможен в 50% случаев. Летальный исход в 100% случаев наступает при дозах 550- 700 бэр. В настоящее время существует ряд противолучевых препаратов. ослабляющих действие излучения.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы лучевой болезни являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика глаза, снижение иммунитета.

Степень зависит от того, является облучение внешним или внутренним. Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, накапливающиеся в организме изотопы йода могут вызывать поражения щитовидной железы, редкоземельные элементы — опухоли печени, изотопы цезия, рубидия — опухоли мягких тканей.

Искусственные источники радиации

Кроме облучения от естественных источников радиации, которые были и есть всегда и везде, в XX веке появились и дополнительные источники излучения, связанные с деятельностью человека.

Прежде всего — это использование рентгеновского излучения и гамма-излучения в медицине при диагностике и лечении больных. , получаемые при соответствующих процедурах, могут быть очень большими, особенно при лечении злокачественных опухолей лучевой терапией, когда непосредственно в зоне опухоли они могут достигать 1000 бэр и более. При рентгенологических обследованиях доза зависит от времени обследования и органа, который диагностируется, и может изменяться в широких пределах — от нескольких бэр при снимке зуба до десятков бэр — при обследовании желудочно-кишечного тракта и легких. Флюрографические снимки дают минимальную дозу, и отказываться от профилактических ежегодных флюорографических обследований ни в коем случае не следует. Средняя доза, получаемая людьми от медицинских исследований, составляет 0,15 бэр в год.

Во второй половине XX века люди стали активно использовать радиацию в мирных целях. Различные радиоизотопы используют в научных исследованиях, при диагностике технических объектов, в контрольно-измерительной аппаратуре и т. д. И наконец — ядерная энергетика. Ядерные энергетические установки используют на атомных электрических станциях (АЭС), ледоколах, кораблях, подводных лодках. В настоящее время только на атомных электрических станциях работают свыше 400 ядерных реакторов общей электрической мощностью свыше 300 млн кВт. Для получения и переработки ядерного горючего создан целый комплекс предприятий, объединенных в ядерно-топливный цикл (ЯТЦ).

ЯТЦ включает предприятия по добыче урана (урановые рудники), его обогащению (обогатительные фабрики), изготовлению топливных элементов, сами АЭС, предприятия вторичной переработки отработанного ядерного горючего (радиохимические заводы), по временному хранению и переработке образующихся радиоактивных отходов ЯТЦ и, наконец, пункты вечного захоронения радиоактивных отходов (могильники). На всех этапах ЯТЦ радиоактивные вещества в большей или меньшей степени воздействуют на обслуживающий персонал, на всех этапах могут происходить выбросы (нормальные или аварийные) радионуклидов в окружающую среду и создавать дополнительную дозу на население, особенно проживающее в районе предприятий ЯТЦ.

Откуда появляются радионуклиды при нормальной работе АЭС? Радиация внутри ядерного реактора огромна. Осколки деления топлива, различные элементарные частицы могут проникать через защитные оболочки, микротрещины и попадать в теплоноситель и воздух. Целый ряд технологических операций при производстве электрической энергии на АЭС могут приводить к загрязнению воды и воздуха. Поэтому атомные станции снабжены системой водо- и газоочистки. Выбросы в атмосферу осуществляются через высокую трубу.

При нормальной работе АЭС выбросы в окружающую среду малы и оказывают небольшое воздействие на проживающее по близости население.

Наибольшую опасность с точки зрения радиационной безопасности представляют заводы по переработки отработанного ядерного горючего, которое обладает очень высокой активностью. На этих предприятиях образуется большое количество жидких отходов с высокой радиоактивностью, существует опасность развития самопроизвольной цепной реакции (ядерная опасность).

Очень сложна проблема борьбы с радиоактивными отходами, которые являются весьма значимыми источниками радиоактивного загрязнения биосферы.

Однако сложные и дорогостоящие от радиации на предприятиях ЯТЦ дают возможность обеспечить защиту человека и окружающей среды до очень малых величин, существенно меньших существующего техногенного фона. Другая ситуация имеет место при отклонении от нормального режима работы, а особенно при авариях. Так, произошедшая в 1986 г. авария (которую можно отнести к катастрофам глобального масштаба — самая крупная авария на предприятиях ЯТЦ за всю историю развития ядерной энергетики) на Чернобыльской АЭС привела к выбросу в окружающую среду лишь 5 % всего топлива. В результате в окружающую среду было выброшено радионуклидов с общей активностью 50 млн Ки. Этот выброс привел к облучению большого количества людей, большому количеству смертей, загрязнению очень больших территорий, необходимости массового переселения людей.

Авария на Чернобыльской АЭС ясно показала, что ядерный способ получения энергии возможен лишь в случае принципиального исключения аварий крупного масштаба на предприятиях ЯТЦ.