Конспект урока: "Импульс тела. Реактивное движение."

ИМПУЛЬСОМ ТЕЛА НАЗЫВАЕТСЯ векторная величина, равная ПРОИЗВЕДЕНИЕ МАССЫ ТЕЛА НА ЕГО СКОРОСТЬ:

За единицу импульса в системе СИ принят импульс тела массой 1 кг, двигающегося со скоростью 1 м/с. Называется эта единица КИЛОГРАММ-МЕТР В СЕКУНДУ(кг . м/с).

СИСТЕМА ТЕЛ, НЕ ВЗАИМОДЕЙСТВУЮЩИХ С ДРУГИМИ ТЕЛАМИ, НЕ ВХОДЯЩИМИ В ЭТУ СИСТЕМУ, НАЗЫВАЕТСЯ ЗАМКНУТОЙ.

В замкнутой системе тел для импульса выполняется закон сохранения.

В ЗАМКНУТОЙ СИСТЕМЕ ТЕЛ ГЕОМЕТРИЧЕСКАЯ СУММА ИМПУЛЬ­СОВ ТЕЛ ОСТАЕТСЯ ПОСТОЯННОЙ ПРИ ЛЮБЫХ ВЗАИМОДЕЙСТВИЯХ ТЕЛ ЭТОЙ СИСТЕМЫ МЕЖДУ СОБОЙ.

На законе сохранения импульса основано реактивное движение. При сгорании топлива, газы, нагретые до большой температуры, выбрасываются из сопла ракеты с некоторой скоростью. При этом они взаимодействуют с ракетой. Если до начала работы двигателя сумма импульсов

V
v
ракеты и топлива была равна нулю, после выброса газов, она должна остаться такой же:

где M - масса ракеты; V - скорость ракеты;

m - масса выброшенных газов; v - скорость истечения газов.

Отсюда получим выражение для скорости ракеты:

Главная особенность реактивного двигателя в том, что для движения ему не нужна среда с которой он может взаимодействовать. Поэтому ракета - единственное транс­портное средство, способное перемещаться в безвоздушном пространстве.

Доказал возможность использования ракет для исследования космического пространства великий русский ученый и изобретатель Константин Эдуардович Циолковский. Он разработал схему устройства ракеты, нашел необходимые компоненты топлива. Работы Циолковского послужили базой для создания первых космических кораблей.

Первый в мире искусственный спутник Земли был запущен в нашей стране 4 октября 1957 года, а 12 апреля 1961 года Юрий Алексеевич Гагарин стал первым космонавтом Земли. В настоящее время космические аппараты исследуют другие планеты Солнечной системы, кометы, астероиды. Американские астронавты высажива­лись на Луне, готовится пилотируемый полет на Марс. На орбите в течении длительного времени работают научные экспедиции. Разработаны космические корабли многора­зового использования "Шатл" и "Челенджер" (США) , "Буран" (Россия), ведутся работы по созданию на орбите Земли научной станции "Альфа", где будут вместе работать ученые разных стран.

Реактивное движение используют и некоторые живые организмы. Например, кальмары и осьминоги движутся, выбрасывая струю воды в противоположную движению сторону.

4/2. Экспериментальное задание по теме «Молекулярная физика»: наблю­дение изменения давления воздуха при изменении температуры и объема.

Подключить гофрированный цилиндр к манометру, измерить давление внутри цилиндра.

Закон сохранения импульса

В подразделе (5.8) было введено понятие импульса произвольного тела и получено уравнение (5.19), описывающее изменение импульса под действием внешних сил. Так как изменение импульса обусловлено только внешними силами, то уравнение (5.19) удобно применять для описания взаимодействий нескольких тел. При этом взаимодействующие тела рассматривают как одно сложное тело (систему тел). Можно показать, что импульс сложного тела (системы тел) равен векторной сумме импульсов его частей:

p = p 1 +p 2 +…(9.13)

Для системы тел уравнение вида (5.13) записывается без всяких изменений:

dp = F·dt. (9.14)

Изменение импульса системы тел равно импульсу действующих на нее внешних сил.

Рассмотрим некоторые примеры, иллюстрирующие действие этого закона.

На рис. 9.10, а спортсменка стоит, опираясь правой ногой на скейтборд, а левой отталкивается от земли. Достигнутая при толчке скорость зависит от силы толчка и от времени, в течение которого эта сила действует.

На рис. 9.10, б изображен метатель копья. Скорость, которую приобретет копье данной массы, зависит от силы, приложенной рукой спортсмена и от времени, в течение которого она приложена.

Рис. 9.10. а) Спортсменка на скейтборде; б) метатель копья

Рис. 9.11.

Толкание ядра

Поэтому перед броском копья спортсмен заносит руку далеко назад. Более детально подобный процесс разобран ни примере спортсмена, толкающего ядро, рис. 9.11.

Из равенства (9.14) вытекает одно важное для практического применения следствие, называемое законом сохранения импульса. Рассмотрим систему тел, на которую не действуют внешние силы. Такую систему называют замкнутой.

Система тел, которые взаимодействуют только между собой и не взаимодействуют с другими телами, называется замкнутой.

Для такой системы внешних сил нет (F = 0 и dp = 0). Поэтому имеет место закон сохранения импульса.

Векторная сумма импульсов тел, входящих в замкнутую систему, остается неизменной (сохраняется).

Иными словами, для любых двух моментов времени импульсы замкнутой системы одинаковы:



p 1 =p 2 (9.15)

Закон сохранения импульса - это фундаментальный закон природы, не знающий никаких исключений. Он абсолютно точно соблюдается и в макромире и в микромире.

Конечно, замкнутая система - это абстракция, так как практически во всех случаях внешние силы есть. Однако для некоторых типов взаимодействий с очень малой длительностью наличием внешних сил можно пренебречь, так как при малом интервале действия импульс силы можно считать равным нулю:

F·dt 0→dp 0.

К процессам малой длительности относятся

Соударения движущихся тел

Распад тела на части (взрыв, выстрел, бросок).

Примеры

В боевиках часто присутствуют сцены, в которых после попадания пули человека отбрасывает по ходу выстрела. На экране это выглядит довольно эффектно. Проверим, возможно ли это? Пусть масса человек М =70 кг и он в момент попадания пули находится в состоянии покоя. Массу пули примем равной т = 9 г, а ее скорость v = 750 м/с. Если считать, что после попадания пули человек приходит в движение (в действительности этому может помешать сила трения между подошвами и полом), то для системы человек- пуля можно записать закон сохранения импульса: р 1 = р 2. Перед попаданием пули человек не движется и в соответствии с (9.9) импульс системы р 1 = m∙v +0. Будем считать, что пуля застревает в теле. Тогда конечный импульс системы р 2 = (М + т)∙и, где и - скорость, которую получил человек при попадании пули. Подставив эти выражения в закон сохранения импульса, получим:

Полученный результат показывает, что ни о каком отлетании человека на несколько метров не может быть и речи (кстати, тело, брошенное вверх со скоростью 0,1 м/с, поднимется на высоту всего 0,5 мм!).

2) Столкновение хоккеистов.

Два хоккеиста массой М 1 и М 2 двигаются навстречу друг другу со скоростями, соответственно, v 1, v 2 (рис. 9.12). Определить общую скорость их движения, считая столкновение абсолютно неупругим (при абсолютно неупругом ударе тела «сцепляются» и двигаются далее как одно целое).

Рис. 9.12. Абсолютно неупругое столкновение хоккеистов

Применим закон сохранения импульса к системе, состоящей из двух хоккеистов. Импульс системы перед столкновением p 1 =M 1 ∙v 1 - M 2 v 2. В этой формуле стоит знак «-» потому, что скорости v 1 и v 2 направлены навстречу друг другу. Направление скорости v 1 считается положительным, а направление скорости v 2 - отрицательным. После неупругого столкновения тела движутся с общей скоростью v и импульс системы р 2 = (M l + M 2)∙v. Запишем закон сохранения импульса и найдем скорость v:

Направление скорости v определяется ее знаком.

Обратим внимание на одно важное обстоятельство: закон сохранения импульса можно применять только к свободным телам. Если движение одного из тел ограничено внешними связями, то общий импульс сохраняться не будет.

Реактивное движение

На использовании закона сохранения импульса основано реактивное движение. Так называют движение тела, возникающее при отделении от тела с какой-то скоростью некоторой его части. Рассмотрим реактивное движение ракеты. Пусть ракета и ее масса вместе с топливом М покоится. Первоначальный импульс ракеты с топливом равен нулю. При сгорании порции топлива массы т образуются газы, которые выбрасываются через сопло со скоростью и. По закону сохранения импульса общий импульс ракеты и топлива сохраняется: р 2 = p 1 т∙и +(М - m)∙v = 0, где v - скорость, полученная ракетой. Из этого уравнения находим: v = ─т∙и /(М ─ т). Мы видим, что ракета приобретает скорость, направленную в сторону противоположную направлению выброса газа. По мере сгорания топлива скорость ракеты непрерывно возрастает.

Примером реактивного движения является и отдача при выстреле из винтовки. Пусть винтовка, масса которой m 1 = 4,5 кг, стреляет пулей массой т 2 = 11 г, вылетающей со скоростью v 1 = 800 м/с. Из закона сохранения импульса можно высчитать скорость отдачи:

Такая значительная скорость отдачи возникнет, если винтовка не прижата к плечу. В этом случае стрелок получит сильный удар прикладом. При правильной технике выстрела стрелок прижимает винтовку к плечу и отдачу воспринимает все тело стрелка. При массе стрелка 70 кг скорость отдачи в этом случае будет равна 11,8 см/с, что вполне допустимо.

3

Импульс тела. Закон сохранения импульса в природе и технике

План ответа

1. Импульс тела. 2. Закон сохранения импуль­са. 3. Применение закона сохранения импульса. 4. Реактивное движение.

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зави­сит от выбора системы отсчета; по второму закону Ньютона, независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движе­ния может происходить только при действии силы, т. е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохра­няться при взаимодействии тел. Такими величинами являются энергия и импульс.

Импульсом тела называют векторную физи­ческую величину, являющуюся количественной ха­рактеристикой поступательного движения тел. Им­пульс обозначается р. Единица измерения импульса Р - кг м/с. Импульс тела равен произведению мас­сы тела на его скорость: р = mv . Направление векто­ра импульса р совпадает с направлением вектора скорости тела v (рис. 4).

Для импульса тел выполняется закон сохране­ния, который справедлив только для замкнутых фи­зических систем. В общем случае замкнутой назы­вают систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механике замкнутой называют систему, на кото­рую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае р 1 = р 2 где р 1 - начальный импульс системы, а р 2 - конеч­ный. В случае двух тел, входящих в систему, это вы­ражение имеет вид m 1 v 1 + т 2 v 2 = m 1 v 1 " + т 2 v 2 " где т 1 и т 2 - массы тел, а v 1 и v 2 , - скорости до взаимодей­ствия, v 1 " иv 2 " - скорости после взаимодействия. Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых вза­имодействиях, происходящих внутри этой системы.

Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодей ствия равна геометрической сумме импульсов этих тел после взаимодействия. В случае незамкнутой системы импульс тел системы не сохраняется. Одна­ко, если в системе существует направление, по кото­рому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимо­действия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействую­щих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения им­пульса.

Экспериментальные исследования взаимодей­ствий различных тел - от планет и звезд до атомов и элементарных частиц - показали, что в любой си­стеме взаимодействующих тел при отсутствии дей­ствия со стороны других тел, не входящих в систему или равенстве нулю суммы действующих сил, гео­метрическая сумма импульсов тел действительно остается неизменной.

В механике закон сохранения импульса и за­коны Ньютона связаны между собой. Если на тело массой т в течение времени t действует сила и ско­рость его движения изменяется от v 0 до v, то уско­рение движения a тела равно a = (v - v 0 )/ t . На осно­вании второго закона Ньютона для силы F можно записать F = та = m (v - v 0 )/ t , отсюда следует Ft = mv - mv 0 .

Ft - векторная физическая величина, харак­теризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время t ее действия, называется импульсом силы.

Единица импульса в СИ - Н с.

Закон сохранения импульса лежит в основе реактивного движения. Реактивное движение - это такое движение тела, которое возникает после отде­ления от тела его части.

Пусть тело массой т покоилось. От тела отде­лилась какая-то его часть т 1 со скоростью v 1 . Тогда

оставшаяся часть придет в движение в противопо­ложную сторону со скоростью v 2 , масса оставшейся части т 2 Действительно, сумма импульсов обоих частей тела до отделения была равна нулю и после разделения будет равна нулю:

т 1 v 1 +m 2 v 2 = 0, отсюда v 1 = -m 2 v 2 /m 1 .

Большая заслуга в развитии теории реак­тивного движения принадлежит К. Э. Циолковскому.

Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рас­считал запасы топлива, необходимые для преодоле­ния силы земного притяжения; основы теории жид­костного реактивного двигателя, а так же элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одно­временно) и последовательный (реактивные двигате­ли работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигате­лем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций и подробно рассмотрел условия жизни и жизнеобеспе­чения на них. Технические идеи Циолковского нахо­дят применение при создании современной ракетно-космической техники. Движение с помощью реак­тивной струи, по закону сохранения импульса, ле­жит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактив­ный принцип.

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин, вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»: