Дифференциал передача. Дифференциал: что это такое.

Он представляет собой планетарный механизм, предназначенный для распределения крутящего момента между ведущими полуосями транспортного средства и обеспечения вращения ведущих колёс с различной частотой при движении по кривой или по неровностям пути.

Требования к диф-алу:

Должен обеспечивать распределение крутящего момента по ведущим колёсам или мостам в соответствии с их тяговыми возможностями по условию сцепления с дорогой;

Иметь высокий КПД;

Обеспечивать хорошую управляемость и устойчивость ав-ля при движении по дорогам с неравномерным коэф-том сцепления, на поворотах и при движении по неровностям дороги;

Иметь малые габариты и вес;

Иметь высокую надёжность и износостойкость.

Классификация:

    По конструктивным признакам: зубчатые; червячные; кулачковые;

    По кинематике: симметричные; несимметричные;

    По коэф-ту блокировки: с малым трением; с повышенным трением; с полным трением;

    По способу блокировки: с принудительной блокировкой; самоблокирующиеся;

    По назначению: межосевой; колёсный.

Симметричные диф-лы – у к-ых передаточное число =1, т. е. полуосевые шестерни имеют одинаковый диаметр и равное число зубьев.

Несимметричные диф-лы – у к-ых передаточное число не=1, и у них полуосевые шестерни имеют разные диаметры и числа зубьев.

Преимущества симметричных: - простота устройства;

Малые размеры и масса;

Надёжность;

Высокий КПД;

Обеспечение устойчивости при движении по скользкой дороге и торможении двигателем.

Недостаток: ограниченная проходимость.

Межосевой симметричный диф-ал.

Крестовина 1, несущая шестерни-сателлиты, установлена на валу 6, являющемся продолжением выходного вала раздаточной коробки. Шестерни-сателлиты находятся в зацеплении с боковыми коническими шестернями. Правая коническая шестерня выполнена заодно целое с цилиндрической шестерней 2, а левая – с шестерней 7. Шестерня 2 находится в зацеплении с шестерней 4, установленной на валу 5 привода среднего моста. Шестерня 7 находится в зацеплении с шестерней 8, установленной на валу 9 привода заднего моста.

Если при движении ав-ля колёса среднего и заднего ведущих мостов вращаются с одинаковой скоростью, то крестовина с сателлитами вращается как одно целое с коническими шестернями межосевого диф-ала. Крутящий момент равномерно распределяется между обоими ведущими мостами.

В случае вращения колёс того и другого мостов с разными скоростями боковая коническая шестерня, связанная с колёсами, имеющими меньше число оборотов, вращаеися медленнее, чем другая. Это вызывает перекатывание сателлитов по боковой шестерне, вращающейся с меньшим числом оборотов, в рез-те чего сателлиты начинают вращаться на своих осях. Вращение сателлитов увеличивает число оборотов другой боковой шестерни, и колёса, связанные с ней, получают более быстрое вращение.

Схема, пр-п работы и свойства самоблокирующихся дифференциалов повышенного трения .


Для повышения проходимости авто­мобиля при движении по бездорожью применяют дифференциалы с принудительной блокировкой или самоблокирующийся диффе­ренциал.

Сущность принудительной блокировки состо­ит в том, что ведущий элемент (корпус) дифференциала в момент включения блокировки жестко соединяется с полуосевой шестер­ней. Для этого предусмотрено специальное дистанционное устрой­ство с зубчатой муфтой.

Самоблокирующийся дифференциал повы­шенного трения (кулачковый), применяемый на автомобиле ГАЗ-66, показан на рис. 1, а, б. Он состоит из внутренней5 и наружной6 звездочек, между кулачками которых заложены сухари 3 сепаратора4. Сепаратор выполнен за одно целое с левой чашкой дифференциала и соединен с ведомой шестерней2 главной пере­дачи. Правая чашка (на чертеже не показана) свободно охватывает наружную звездочку и в сборе с левой чашкой образует корпус дифференциала. Звездочки дифференциала своими внутренними шлицами соединяются полуосями 7.

При вращении ведомой шестерни главной передачи и движении автомобиля по прямой сухари оказывают одинаковое давление на кулачки обеих звездочек и заставляют их вращаться с одной ско­ростью.

Когда одно из колес попадает на поверхность дороги с большим сопротивлением движению, то связанная с ним звездочка начинает вращаться с меньшей частотой, чем сепаратор. Сухари, находящиеся в сепараторе, оказывают большее давление на кулачки замедляющейся звездочки и ускоряют ее вращение.

Таким образом, в местах контакта сухарей с кулачками звездочек возникает повышенное трение, которое препятствует сильному изменению относительных скоростей обеих звездочек, и колеса вращаются примерно с одной угловой скоростью. Из-за сил трения сухарей по кулачкам происходит перераспределение моментов. На ускоряющейся звездочке силы трения направлены против вращения, на отстающей - по направлению вращения. Крутящий момент на отстающей звездочке возрастает, а на ускоряющейся уменьшается на момент сил трения в результате пробуксовка колёс исключается.

КАК РАБОТАЮТ ДИФФЕРЕНЦИАЛЫ

В этой статье мы расскажем о работе дифференциалов, а также зачем он необходим автомобилю и о его недостатках.

Что такое дифференциал?

Дифференциал – это устройство, которое распределяет крутящий момент по двум направлениям, допуская вращение каждого выхода с разной скоростью. Он используется во всех современных автомобилях и грузовиках, а также на машинах с постоянным полным приводом. Причем в последних - между каждой парой колес, потому что передние проходят разный путь в повороте по сравнению с задними. Системы непостоянного полного привода не имеют дифференциала между передними и задними колесами; вместо этого во время механической блокировки передние и задние колеса вынуждены вращаться с одинаковой средней скоростью. Вот почему такие системы полного привода не рекомендуют использовать на сухом асфальте: с включенным полным приводом машина тяжело поворачивается на асфальте.

Дифференциал выполняет сразу 3 функции:

Направляет мощность двигателя на колеса;

Является последним этапом понижения передачи в машине, замедляя частоту вращения трансмиссии перед тем, как мощность пойдет на колеса;

Направляя мощность на колеса, позволяет им вращаться с разными скоростями (это свойство дало имя дифференциалу).

Зачем нужен дифференциал

Колеса машины вращаются с разными скоростями, особенно в поворотах - внутренние колеса проходят меньший путь, чем наружные, а значит, и с меньшей скоростью. При этом передние колеса проходят разное расстояние по сравнению с задними. Если бы машина не имела дифференциалов, то колеса вращались бы с одной и той же скоростью. Это сильно затруднило бы повороты: чтобы поворачивать, одно колесо должно было бы проскальзывать, т.е. буксовать. Усилие от одного колеса через ось переходило бы, серьезно нагружая ее компоненты.




Открытые дифференциалы

Начнем с простейшего варианта, называемого открытым дифференциалом. Когда машина едет по прямой, оба ведущих колеса вращаются с одинаковой скоростью. Первичная шестерня вращает коронную шестерню и корпус дифференциала, при этом ни одна из шестерен в корпусе не вращается – обе полуосевые шестерни заблокированы, так как движение идет по прямой. Обратите внимание, что пара “первичная шестерня и коронная шестерня” - это последнее передаточное число в машине, которое часто называют передаточным числом моста или передаточным числом главной передачи. Если оно составляет 4,10, тогда число зубьев коронной шестерни в 4,10 раза больше числа зубьев первичной шестерни. При повороте подключаются полуосевая и ведущая шестерни, обеспечивая разные скорости для колес.


Дифференциал в разрезе. Классические автомобильные дифференциалы основаны на планетарной передаче. Карданный вал (1 ) через коническую зубчатую передачу вращает ротор (2 ). Ротор через шестерни (3 ) вращает полуоси (4 ). Такое зацепление имеет не одну, а две степени свободы, и каждая из полуосей вращается с такой скоростью, с какой может. Постоянна лишь суммарная скорость вращения полуосей

Бездорожье

Это еще одна ситуация, когда простой дифференциал может привести к проблеме. Допустим, у вас полно¬приводный внедорожник или «паркетник» с открытым дифференциалом на передней и задней оси. Как мы упоминали ранее, открытые дифференциалы подают всегда одинаковый крутящий момент на оба колеса. Если одно из передних и одно из задних колес повиснут в воздухе одновременно, то они будут беспомощно крутиться в воздухе, а автомобиль вообще не сможет двигаться вперед. Решение этой проблемы – дифференциалы повышенного трения (limited slip differential (LSD)). Они используют различные механизмы, чтобы работать, как обычные дифференциалы при поворотах. При скольжении одного колеса дифференциалы повышенного трения позволяют подавать больше крутящего момента на колесо с тягой.

Дифференциалы с постоянным моментом блокировки

Этот вид дифференциалов повышенного трения использует все элементы открытого дифференциала, добавляя пружины и набор сцепления. В некоторых используется конусообразное сцепление, подобно синхронизаторам механической КПП. Пружины толкают полуосевые шестерни, которые закреплены на корпусе дифференциала, на сцепление. Сцепление срабатывает при возникновении разницы в скоростях вращения колес оси, например в повороте. Сцепление сопротивляется разнице в скорости вращения колес. Если одно колесо пытается вращаться быстрее другого, ему сначала надо преодолеть сцепление. Жесткость пружин и трение сцепления определяют значение крутящего момента на преодоление сопротивления. Вернемся к ситуации, когда одно колесо имеет сцепление с дорогой, а второе находится на льду. Дифференциалы с постоянным моментом блокировки даже при нахождении одного колеса на льду без тяги позволяют передать крутящий момент на другое колесо. Крутящий момент, идущий на колесо не на льду, равен максимальному усилию на преодоление сопротивления сцепления внутри дифференциала. В результате автомобиль продолжает движение с ограниченной мощностью.

Вискостная муфта

Вискостная муфта часто применяется в полноприводных автомобилях для соединения передней оси с задней. Когда передняя ось начинает буксовать, крутящий момент идет на заднюю. Вискостная муфта представляет собой набор дисков внутри закрытого корпуса, заполненного тягучей жидкостью. Каждый набор дисков соединен с выходной полуосью. В нормальных условиях оба набора дисков и жидкость вискомуфты вращаются с одинаковой скоростью. Когда один из мостов пытается вращаться быстрее, например при пробуксовке, соответствующий ему набор дисков начинает вращаться быстрее, чем другой. Вискостная жидкость, которая находится между дисками, пытается догнать ускорившиеся диски, увлекая за собой медленные диски, передавая больший крутящий момент на медленные колеса, то есть на те, которые не буксуют. Чем больше разница в скорости вращения между дисками, тем больший крутящий момент передает вискостная муфта. Она не вмешивается в повороты, потому что получаемый крутящий момент очень мал. Кстати, в этом состоит ее основной недостаток: крутящий момент не передается, пока колесо не начнет буксовать.

Блокирующийся дифференциал и Торсен (Torsen®)

Блокировка дифференциала используется для внедорожников. Она добавляет к свободному дифференциалу электрический, пневматический и гидравлический механизм, чтобы жестко соединить шестерни между собой. Этот механизм включается водителем вручную, и во включенном режиме оба колеса вращаются с одинаковой скоростью. Если одно из колес окажется в воздухе или на льду, это никак не влияет на второе. Оба колеса продолжают вращаться с одинаковой скоростью, как будто ничего не случилось. Дифференциал Torsen (означет – чувствующий момент – Torque Sensing) – это чисто механическое устройство; в нем нет электроники, сцеплений и вискостных жидкостей. Дифференциал Torsen – это несколько червячных передач, вращающихся внутри герметичного цилиндрического корпуса. От углов наклона червяков и применяемых материалов зависит коэффициент блокировки. Он определяет, когда и какой дополнительный момент должен перейти на ось, имеющую лучшее сцепление с дорогой. Но как только одно из колес теряет тягу, разница в крутящем моменте колес вынуждает зацепляться шестерни Torsen. Форма шестерен в этом дифференциале определяет коэффициент передачи крутящего момента. Например, если конкретный дифференциал Torsen сконструирован с передаточным числом 5:1, то он способен увеличивать вплоть до 5 раз крутящий момент на колесо с хорошей тягой. Дифференциал Torsen часто находит применение в спортивных полноприводных машинах. Подобно вискомуфте, он используется для передачи крутящего момента между передней и задней осью. В этом случае дифференциал предпочтительнее вискомуфты, потому что передает крутящий момент на колеса до того момента, как начинается пробуксовка. Определяющей характеристикой Torsen стало передаточное соотношение крутящего момента TBR (Torque Bias Ratio). Типичные значения – от 2 до 6.

Дифференциалы и тяга

Открытый дифференциал всегда подает одинаковый крутящий момент на каждое колесо. Существуют два фактора, от которых зависит количество крутящего момента на колеса: мощность и тяга. На сухой дороге, когда тяга в избытке, количество крутящего момента ограничено возможностями двигателя до колес; в условиях слабой тяги, например при езде по льду, количество максимального крутящего момента равно тому значению, при котором колесо начинает проскальзывать в данных условиях. Итак, даже если машина может произвести больше крутящего момента, необходима тяга, чтобы передать его к дороге. Если дать больше газа в момент пробуксовки, колеса просто начнут больше проскальзывать.

На льду

Рассмотрим, что происходит, если одно колесо буксует, а другое имеет хорошее сцепление со льдом. Вот тут проявляется слабость открытых дифференциалов. Дело в том, что открытые дифференциалы подают всегда одинаковый крутящий момент на оба колеса, а его максимальное значение – это момент начала пробуксовки. На льду не надо иметь большой крутящий момент, чтобы заставить колеса пробуксовывать. Когда колесо с хорошей тягой получает лишь тот ограниченный крутящий момент, который может быть направлен на колесо с меньшим сцеплением, машина не может быстро ехать.

Дифференциал - механизм распределения крутящего момента входного вала между двумя выходными полуосями ведущих колес или, на автомобилях повышенной проходимости,для распределения крутящего момента между передней и задней ведущими осями.
Это часть трансмиссии, которая на автомобилях классической и переднеприводной компоновки обычно выполняется в виде единого блока с главной передачей ,а на внедорожниках встраивается в раздаточную коробку
Свободный дифференциал всегда делит поступающий на него крутящий момент поровну - не зависимо от того, с равными или с разными скоростями вращаются ведущие колеса (или ведущие оси).

Назначение дифференциала

При движении автомобиля по криволинейным участкам дороги - например, в поворотах - колеса ведущей оси катятся по окружностям разной длины. Внешнее (по отношению к центру поворота автомобиля) колесо проходит больший путь, чем внутреннее. Эта разница тем больше, чем круче поворот. Аналогичная проблема возникает и в движении по прямой, если используются ведущие колеса разной размерности и т.п. Если в этих ситуациях колеса соединить жесткой осью,окажется, что одно колесо вращается быстрей, чем нужно для прохождения заданной траектории,а другое медленней. Значит, оба колеса будут пробуксовывать, испытывать повышенные нагрузки, сильней нагреваться и изнашиваться. Увеличится и расход топлива. Наконец, это нарушает курсовую устойчивость автомобиля и ведет к его заносу или сносу - особенно, на скользких дорогах.
Для компенсации разницы проходимого ведущими колесами пути используется особый механизм - дифференциал. Простейший, свободный дифференциал уравнивает крутящие моменты (или тяговые силы) обоих ведущих колес, и если скорости их вращения (или линейного движения) разные, то и мощности на них пропорциональны этой разнице. Колесо, вращающееся быстрей, тратит на это несколько большую мощность, чем то, которое вращается медленней.
Таким образом дифференциал предназначен для обеспечения вращения ведущих колес с разными угловыми скоростями при постоянно передаче крутящего момента на оба колеса ведущей оси. Эта же логика присутствует и в работе межосевого дифференциала.

Устройство и принцип действия

Дифференциал классической конструкции устроен просто. Например, на заднеприводном автомобиле вращение от ведомого вала коробки передач передается через карданный вал на ведущую коническую шестерню главной передачи, которая находится в постоянном зацеплении с ведомой шестерней главной передачи. Ведомая шестерня является одновременно корпусом дифференциала, в котором перпендикулярно оси ведомой шестерни закреплена ось сателлитов - малых конических шестерен. Последние вращаются вместе с корпусом дифференциала относительно оси ведомой шестерней главной передачи. Сателлиты находятся в постоянном зацеплении с коническими шестернями левой и правой полуосей ведущих колес.
При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей.
Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней,наружное быстрей - при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами - сохраняется. Мощность же, подаваемая на колеса, перераспределяется,- ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

Применение дифференциалов

В автомобилях с одной ведущей осью устанавливается один дифференциал, объединенный с главной передачей. В автомобилях с двумя и более ведущими осями дифференциалы устанавливаются в каждую ведущую ось (например, в трехосном грузовике или автобусе с двумя задними ведущими осями дифференциалы установлены в среднюю и заднюю оси). В автомобилях с подключаемым полным приводом дифференциалы устанавливаются в каждую ведущую ось (у двухосного полноприводного джипа с подключаемым передним ведущим мостом два дифференциала - по одному в каждой ведущей оси), но эксплуатация этих машин с постоянно подключенной передней осью не рекомендуется по причине повышенного износа главных передач и колес из-за неравномерно распределяемой мощности между осями. В свою очередь в автомобилях повышенной проходимости с постоянно подключенными ведущими осями применяют три дифференциала - по одному в каждой ведущей оси и один межосевой, установленный в раздаточной коробке. Межосевой дифференциал распределяет мощность между ведущими осями в зависимости от длины проходимого колесами оси пути. К примеру, передние колеса могут преодолевать возвышение, задние еще двигаться по прямой - передние колеса описывают более длинный путь, чем задние, соответственно, межосевой дифференциал обеспечивает передачу большей части мощности двигателя на переднюю ось, чем на заднюю. На многоосных транспортных средствах с несколькими ведущими осями применяют межтележечный дифференциал.
Дифференциал не применяется на транспортных средствах с одним ведущим колесом - в частности, на мотоциклах и трициклах с двумя передними управляемыми колесами. Если трицикл построен по схеме с одним передним управляемым колесом и двумя ведущими задними, то на нем применяют автомобильный ведущий мост с дифференциалом. Обычно подобные трициклы строят по индивидуальным заказам на базе популярных тяжелых моделей (пример - кастомные трициклы на базе «Харлей-Дэвидсон»).
На гоночных автомобилях на основе серийных моделей (например, на раллийных или для кольцевых гонок) дифференциал перед гонками блокируют, поскольку повороты такие машины проходят на большой скорости и с заносом. В данном случае склонность автомобиля к заносу из-за отсутствия дифференциала считается преимуществом.

Недостаток дифференциала

Главным недостатком дифференциала классической конструкции является проблема пробуксовки колеса, потерявшего контакт с поверхностью дорожного полотна. Когда одно из ведущих колес вращается в вывешенном состоянии его скорость вдвое больше, чем была бы при этих же оборотах ведомой шестерни дифференциала при нормальном движении по прямой. Зато второе колесо вообще не вращается. Причина проста. Момент сопротивления вращению вывешенного колеса ничтожен, соответственно мал и подводимый к нему крутящий момент. Значит, столь же мал крутящий момент и на противоположном колесе - оно стоит. Если же одно из колес буксует - с повышенными оборотами, но с существенным сопротивлением (например, в грязи, песке и т.п.), то такой же крутящий момент поступает и на другое, не буксующее, колесо. В результате автомобиль может двигаться с небольшой скоростью. При этом на буксующее колесо подается более высокая мощность - она тратится на нагрев шины, дороги и т.д. Эффект пробуксовки снижает проходимость автомобиля со свободным дифференциалом. Для решения этой проблемы автомобили оснащают механизмами блокировки дифференциала - ручной или автоматической - различной конструкции.

Механизмы блокировки дифференциала

  • Ручная блокировка дифференциала

Самым простым способом блокировки дифференциала является применение механизма с ручным управлением. Этот вид блокировки применяется на автомобилях повышенной проходимости. Блокировка производится блокировочными муфтами, которые фиксируют сателлиты. Дифференциал отключается. К достоинствам данного типа блокировки можно отнести простоту и надежность конструкции, к недостаткам - необходимость точно оценивать дорожную обстановку и отключать блокировку дифференциала при движении по качественным дорогам во избежание поломок главной передачи и ведущего моста в целом.

  • Блокировка дифференциала с электронным управлением

На современных полноприводных легковых автомобилях повышенной проходимости с развитым компьютерным управлением работой агрегатов и механизмов устанавливают антипробуксовочную систему с электронным управлением. Как только бортовой компьютер автомобиля (или электронный блок антипробуксовочной системы) получает от датчика вращения сигнал о том, что одно колесо оси вращается значительно быстрей второго, свободное колесо притормаживается рабочим тормозом - благодаря свободному дифференциалу мощность передается на колесо, которое не утратило контакта с дорожным покрытием. Эта система требует наличия системы раздельного привода тормозов всех четырех колес и точной отладки датчиков.
Антипробуксовочные системы позволяют достаточно тонко регулировать распределение мощности в зависимости от состояния дорожного покрытия и избежать потерь мощности двигателя при срабатывании дифференциала. С другой стороны, управляющая система из датчиков и исполнительных приводов тормозов (на соленоидах) обладает инерционностью, поэтому работает с некоторым запозданием, что приходится учитывать водителю.
На гоночных автомобилях иногда применяются фрикционные дифференциалы с тормозными ленточными механизмами, управляемыми электроникой.

  • Автоматическая блокировка с применением фрикционной муфты

На спортивные автомобили, выпускаемые малыми сериями или по заказу, иногда устанавливают фрикционные самоблокирующиеся дифференциалы. На серийных машинах эти дифференциалы редкость, поскольку они требуют особого обслуживания и подвержены интенсивному износу.
Фрикционные муфты устанавливаются между полуосевыми шестернями и корпусом дифференциала. При прямолинейном движении автомобиля полуоси вращаются с одинаковой угловой скоростью - сила трения во фрикционных муфтах равна нулю, дифференциал распределяет мощность между колесами ведущей оси поровну. Как только одна из полуосей начинает вращаться быстрей, диски фрикционной муфты сближаются, за счет возникающих сил трения муфта притормаживает вращение свободной полуоси. Этот тип дифференциала отличается невысокой эффективностью при большой разнице в угловых скоростях ведущих колес (например, на поворотах с малым радиусом закругления).

Дифференциал


К атегория:

Автомобили и трактора


Дифференциал


Главная передача служит для увеличения крутящего момента на ведущих колесах и передачи его от карданного вала к полуосям под прямым углом.

В настоящее время применяются шестеренные главные передачи как наиболее совершенные. Они разделяются на одинарные (с одной парой шестерен) и двойные (с двумя парами шестерен).

Одинарная главная передача состоит из одной пары конических шестерен, находящихся в постоянном зацеплении. Зубья конических шестерен делают спиральными, чтобы повысить их прочность, долговечность и бесшумность работы главной передачи.


Рис. 1. Карданная передача автомобиля

Крутящий момент от карданной передачи передается через ведущую коническую шестерню на ведомую. Оси этих шестерен могут пересекаться или быть смещенными. В последнем случае передача называется гипоидной. Преимуществами гипоидных передач являются высокая прочность и долговечность шестерен благодаря увеличению толщины и длины зубьев, большая плавность зацепления и бесшумность работы. При установке гипоидной передачи карданную передачу можно расположить ниже, уменьшив тем самым высоту центра тяжести автомобиля и улучшив его устойчивость. Одинарные передачи применяются на легковых автомобилях и на грузовых автомобилях малой и средней грузоподъемности.

В двойной главной передаче крутящий момент передается от ведущей конической шестерни к ведомой шестерне, установленной на одном валу с малой цилиндрической шестерней, которая передает крутящий момент на большую цилиндрическую шестерню. Цилиндрические шестерни могут быть с прямыми или косыми зубьями. Валы главной передачи устанавливаются в радиально-упорных подшипниках (шариковых или конических роликовых), затяжку которых можно регулировать.

Двойные главные передачи применяются в тех случаях, когда необходимо получить большое передаточное число при небольших габаритах ведущего моста. Двойные главные передачи устанавливаются на грузовых автомобилях средней и большой грузоподъемности и на автобусах.

Передаточные числа главных передач грузовых автомобилей находятся в пределах 5-9.

При движении по неровной дороге и при повороте ведущие колеса автомобиля в одинаковые отрезки времени проходят различные по величине пути. Если бы ведущие колеса были соединены между собой общим валом, то они во всех случаях движения вращались с одинаковой частотой вращения, что неизбежно приводило бы к проскальзыванию и пробуксовке колес относительно дороги. Проскальзывание вызывает повышенный износ шин, увеличивает затрату мощности, приводит к увеличению расхода топлива и затрудняет поворот.

Чтобы избежать указанных недостатков, ведущие мосты снабжают дифференциалом, который дает возможность ведущим колесам вращаться с различной частотой вращения друг относительно друга. Дифференциал может быть осевым и межосевым.

Осевой дифференциал устанавливается между левым и правым колесами одного моста. Межосевой дифференциал располагается обычно в раздаточной коробке или в одном из ведущих мостов и позволяет вращаться с различной частотой вращения колесам переднего, среднего и заднего мостов автомобилей повышенной проходимости.

По конструкции дифференциалы бывают шестеренные и кулачковые, шестеренные дифференциалы бывают с коническими и цилиндрическими шестернями. По принципу работы дифференциалы разделяются на простые (без блокировки) и блокирующиеся. По принципу действия механизмы блокировки делятся на принудительные и самоблокирующиеся. При принудительной блокировке полуоси заднего моста соединяются в единую жесткую систему, вращающуюся как одно целое совместно с дифференциалом.


Рис. 2. Главные передачи:

Наибольшее распространение получили шестеренные дифференциалы с коническими шестернями. На рис. 3, а представлен такой дифференциал с одинарной главной передачей. Он состоит из коробки, в которой установлена крестовина. На цилиндрических шинах крестовины свободно посажены четыре конические шестерни (сателлиты), находящиеся в постоянном зацеплении с правой и левой полуосевыми шестернями, жестко связанными с полуосями. К коробке дифференциала болтами или заклепками крепится ведомая шестерня главной передачи, получающая вращение от ведущего вала. Коробка дифференциала вращается в подшипниках.

Пока оба ведущих колеса испытывают одинаковое сопротивление качению (движению по прямой), сателлиты, вращаясь вместе с корпусом, сообщают обеим полуосевым шестерням одинаковую частоту вращения. Сателлиты в этом случае будут действовать как клинья, заклинивающие полуосевые шестерни и как бы соединяющие обе полуоси в одну ось.

Если одно из ведущих колес вращается медленнее другого (движение на повороте), то произойдет расклинивание полуосевых шестерен. Сателлиты начнут поворачиваться на шипах, перекатываясь по полуосевои шестерне, которая замедлила свое вращение. При этом частота вращения другой полуосевой шестерни увеличивается. При повороте частота вращения внешнего колеса повышается настолько, насколько уменьшается частота вращения внутреннего колеса; при этом сумма частот вращения ведущих колес всегда равна удвоенной частоте вращения корпуса дифференциала.

Для улучшения проходимости автомобиля применяют кулачковый дифференциал, который передает больший крутящий момент на то колесо, которое вращается медленнее, вследствие чего уменьшается возможность пробуксовки колес.

Кулачковый дифференциал повышенного трения, устанавливаемый на автомобилях ГАЗ -66, показан на рис. 3, б. В радиальные прорези ведущей обоймы, соединенной с ведомой шестерней главной передачи, свободно вставлены сухари. Обоймы и имеют кулачки (выступы) и соединяются с полуосями. Вращение от обоймы передается через сухари и кулачки обойм и на полуоси. Полуоси могут вращаться с разной частотой за счет радиального перемещения сухарей по кулачкам обойм. Однако вследствие повышенного трения между сухарями и обоймами для проворачивания полуосей требуется значительная разница в величине сопротивлений на колесах. В результате на обе полуоси передается крутящий момент, достаточный для движения автомобиля, и при пробуксовке одного из колес полная остановка другого колеса, испытывающего большее сопротивление дороги, происходит реже.


Рис. 3. Дифференциалы:
а - с коническими шестернями: б - кулачковый

На автомобилях повышенной проходимости с колесной формулой 6×4 и 6×6 ведущие мосты могут работать в разных по сцеплению колес с дорогой условиях, перекатываться через неровности, проходя в один и тот же момент разный по длине путь. Это означает, что возможно вращение колес одного ведущего моста относительно колес другого и их пробуксовка. Следовательно, в трансмиссию таких автомобилей необходимо включать дифференциал между ведущими мостами и по тем же причинам предусмотреть устройство для их блокирования.

На двух- и трехосных автомобилях в большинстве случаев применяется один межосевой дифференциал.

Межосевые дифференциалы автомобилей ЗИЛ -133Г1 и КамАЭ-5320 разные по конструкции, но одинаковые по принципиальному решению. У обоих автомобилей ведущими являются два задних моста. От коробки передач крутящий момент поступает к среднему ведущему мосту, в котором находится симметричный блокируемый конический межосевой дифференциал.

Дифференциал автомобиля КамАЗ-5320 показан на рис. 4. Крутящий момент поступает на ведущий вал (составляющий одно целое с передней половиной коробки межосевого дифференциала); далее через крестовину и сателлиты он распределяется между дифференциальными шестернями. Первая из них соединена шлицами с хвостовиком ведущей конической шестерни в главной передаче среднего ведущего моста. К межколесному дифференциалу и полуосям вращение передается от главной передачи через цилиндрический редуктор. На задний же ведущий мост вращение от шестерни передается соединяемым с ней шлицами валом.

Блокируется межосевой дифференциал смещением влево зубчатой муфты. Надеваясь на зубчатый венец коробки дифференциала, муфта замыкает ее с дифференциальной шестерней и передает крутящий момент на задний ведущий мост, минуя межосевой дифференциал,

Применение межосевого дифференциала позволяет улучшить условия работы ведущих мостов, уменьшить износ покрышек, обеспечить более высокие тяговые качества и повысить проходимость.

Общие сведения. При повороте автомобиля его внешние и внутренние колеса за один и тот же отрезок времени проходят разные пути. Колесо, катящееся по внутренней кривой, проходит меньший путь, чем колесо, катящееся по внешней кривой. Следовательно, внешнее колесо автомобиля должно вращаться несколько быстрее внутреннего. Аналогичное явление происходит и при прямолинейном движении, если задние колеса автомобиля имеют неодинаковые диаметры, что вполне возможно при неравномерном распределении нагрузки в кузове, неодинаковом износе шин, различном внутреннем давлении в шинах или при движении по неровной дороге.

Чтобы ведущие колеса автомобиля могли вращаться с различной частотой вращения, их крепят не на одном общем валу, а на двух, называемых полуосями и соединенных друг с другом специальным механизмом - дифференциалом, подводящим к этим полуосям крутящий момент от главной передачи.

В основном применяют дифференциалы трех типов: шестеренные, кулачковые и червячные. Дифференциал может быть простым или с самоблокировкой (дифференциал повышенного трения или с механизмом свободного хода). Шестеренные дифференциалы относятся к простым, а кулачковые и червячные - к дифференциалам повышенного трения.

Дифференциал, распределяющий крутящий момент между полуосями, называют симметричным или несимметричным, в зависимости от того, распределяет он крутящий момент между полуосями поровну или непоровну.

Шестеренный симметричный дифференциал. На рис. 5 показаны детали наиболее широко применяемого на автомобилях шестеренного конического дифференциала, устанавливаемого между полуосями ведущих колес. Две чашки коробки дифференциала стянуты болтами. На коробке болтами укреплена ведомая шестерня главной передачи, приводящая коробку во вращение. Между чашками дифференциала зажата крестовина, на шипах которой свободно посажены и могут вращаться малые прямозубые конические шестерни, так называемые сателлиты, находящиеся в зацеплении с двумя коническими полуосевыми шестернями. Эти шестерни внутренними шлицами соединены со шлицевыми концами полуосей, свободно проходящих через отверстия в коробке дифференциала. На наружных концах полуосей установлены колеса. Для уменьшения трения под торцовые поверхности сателлитов и полуосевых шестерен подложены шайбы.

При вращении коробки дифференциала она через сателлиты полуосевые шестерни вращает полуоси. Передача крутящего момента происходит в следующем порядке: ведомая шестерня главной передачи - коробка дифференциала - ось сателлитов - сателлиты - полуосевые шестерни - полуоси. Сателлиты, кроме того, могут вращаться на своих осях, поэтому они могут изменять частоту вращения полуосевых шестерен относительно коробки дифференциала.


Рис. 5. Детали дифференциала

Если сателлиты не вращаются на осях, то обе полуоси вращаются с одинаковой частотой вращения. Это происходит при движении автомобиля по прямой и ровной дороге, когда задние колеса, встречая одинаковое сопротивление качению, проходят одинаковый путь и имеют, следовательно, одинаковую частоту вращения. При повороте автомобиля, например вправо, сателлиты, вращаясь на своих осях, обкатываются по полуосевым шестерням полуоси и колеса. Одновременно частота вращения полуосевой шестерни уменьшается. При этом понижается частота вращения полуоси и колеса, связанных с шестерней. Частота вращения коробки дифференциала всегда остается равной полусумме частот вращения левой и правой полуосей.


Рис. 6. Схема работы дифференциала: а - при движении автомобиля по прямой; 6 - при движении автомобиля на повороте; 1 и 8 полуоси; 2 - коробка дифференциала; 3 и 7 - полуосевые шестерни; 4 и 9 - сателлиты; 5 - ось сателлитов; 6 - ведомая шестерня главной передачи

Наличие дифференциала в приводе к ведущим колесам автомобиля иногда отрицательно влияет на его проходимость. Если одно из ведущих колес автомобиля попадает на скользкий участок дороги, а другое катится по сухому участку, то из-за наличия дифференциала через колесо, движущееся по сухому участку, нельзя передать значительный крутящий момент. Колесо, находящееся на скользком участке, будет буксовать, а другое стоять неподвижно. Это происходит вследствие того, что каждый сателлит представляет собой как бы равноплечую балку, распределяющую действующую на него силу между полуосевыми шестернями поровну. Если одно колесо попадает на скользкий участок дороги, то соединенная с ним полуосевая шестерня оказывает сателлиту меньшее сопротивление и другое колесо стоит неподвижно.

В заднем ведущем мосту автомобиля ГАЗ -53А установлен симметричный конический дифференциал, коробка которого состоит из двух чашек. Как уже указывалось, ведомая шестерня главной передачи прикреплена к фланцу коробки дифференциала, вращающейся на двух роликоподшипниках. Чтобы конструкция была прочной и имела малые габаритные размеры, число сателлитов доведено до четырех. Полуосевые шестерни надеты на шлицы полуосей, которые центрированы в гнездах, расточенных в коробке дифференциала.

Детали дифференциала необходимо смазывать, так как они нагружаются значительными силами. Для улучшения подвода смазки к этим деталям и повышения износостойкости опорных шайб сателлитов в автомобилях ГАЗ -53А на коробке дифференциала установлен маслоуловитель. Дифференциалы легковых автомобилей имеют обычно два сателлита, а грузовых и автобусов - четыре или (иногда) три.

Кулачковый дифференциал повышенного трения. На автомобилях ГАЗ -66 устанавливают кулачковый дифференциал повышенного трения. Сепаратор имеет два ряда отверстий, в которые в шахматном порядке свободно вставлены сухаря.


Рис. 7. Кулачковый дифференциал повышенного трения автомобиля ГАЗ -66:
а - общий вид; б - детали; в - обоймы; 1 - сепаратор; 2 - сухари; 3 - наружная звездочка, соединенная с правой полуосью; 4 - внутренняя звездочка, соединенная с левой полуосью; 5 - ведомая шестерня главной передачи

Сепаратор, являясь ведущим элементом, связан через сухари со звездочками и при прямолинейном движении вращается вместе с ними. Полуоси могут иметь и разные частоты вращения вследствие радиального перемещения сухарей. Под действием кулачков одной из звездочек и соответствующего воздействия на кулачки другой звездочки. Однако при этом из-за повышенного трения между сухарями и звездочками для провертывания полуосей необходимо наличие значительной разницы в сопротивлении колес. Следовательно, в случае буксования одного из колес полная остановка другого колеса происходит реже. Звездочки и сухари изготовляют из легированных сталей. Их трущиеся поверхности имеют высокую твердость.

Дифференциал повышенного трения автомобилей МАЗ от обычного конического дифференциала отличается тем, что у него сателлиты прижимаются к вкладышам через опорные шайбы силой, создаваемой пружинами. Вкладыши неподвижны относительно корпуса дифференциала, поэтому между ними и опорными шайбами, вращающимися вместе с сателлитами, возникает повышенное трение. В результате этого свободное провертывание одной полуоси относительно другой затрудняется, т. е. уменьшается буксование одного из колес, и проходимость автомобиля повышается.

У автомобилей с двумя ведущими задними мостами применен межосевой дифференциал. В качестве примера рассмотрим межосевой дифференциал автомобиля КамАЗ-5320. Картер межосевого дифференциала прикреплен к картеру главной передачи среднего моста. Передняя чашка межосевого дифференциала болтами скреплена с задней чашкой, внутри помещен дифференциальный механизм, в который входят сателлиты с крестовиной, конические шестерни привода среднего моста и привода заднего моста.

Шестерня шлицами постоянно сцеплена с ведущей конической шестерней главной передачи среднего моста, а шестерня --с валом, передающим вращение на главную передачу заднего моста. Шестерня имеет наружные зубья, с которыми в постоянном зацеплении находится внутренняя зубчатая муфта и муфта блокировки дифференциала. При передвижении вилкой муфты вперед она скользит по наружным зубьям внутренней муфты и входит в зацепление с наружными зубьями правой чашки дифференциала, соединяя шестерню с корпусом дифференциала, т. е. проводя блокировку межосевого дифференциала.

Для предотвращения выключения механизма блокировки внутренняя зубчатая муфта имеет снаружи два зубчатых венца, причем толщина зубьев наружного венца на 0,4 мм больше толщины зубьев внутреннего венца. Для включения механизма блокировки водитель, открывая кран, направляет сжатый воздух между крышкой и диафрагмой механизма блокировки. Диафрагма, прогибаясь и преодолевая сопротивление пружины, воздействует на стакан через пружину и передвигает шток, а вместе с ним и вилку. При этом замыкаются контакты микровыключателя, включающие контрольную лампочку на щитке приборов. Принудительную блокировку дифференциала выполняют при движении по скользким и размокшим грунтовым дорогам.


Рис. 8. Дифференциал повышенного трения автомобиля МАЗ : 1 - пружина; 2 и 8 - полуосевые шестерни; 3 - вкладыш; 4 - крестовина дифференциала; 5 - сателлит; 6 - опорная шайба; 7 -. ведомая шестерня главной передачи


Рис. 9. Главная передача среднего

К атегория: - Автомобили и трактора

В повороте любой автомобиль (не важно, полно- или моноприводный) двигается так, что все его колеса проходят разное расстояние и поэтому должны вращаться с разными угловыми скоростями. В противном случае возникают два негативных эффекта:

  • высокие «внутренние» нагрузки на трансмиссию и колеса — по сути, разница энергий каждого из колес при их жесткой связи должна как-то утилизироваться внутри трансмиссии (в лучшем случае — расходоваться на преждевременное разрушение шин);
  • риск потери управляемости ввиду резкого снижения сцепления колес с дорогой (особенно передних, поворотных) и появления у авто сильной недостаточной поворачиваемости («эффект плуга»).

Т.о., в повороте при прочих равных:

  • внешнее колесо всегда вращается быстрее внутреннего (проходит большее расстояние);
  • передняя ось всегда вращается быстрее задней (проходит большее расстояние);
  • попытка заставить колеса вращаться с равными угловыми скоростями приводит к срыву колес в скольжение и потере контроля над машиной.

Обеспечение вращения в повороте всех колес машины с разными скоростями требует применения на машине по одному дифференциалу на каждой ведущей (т.е. цельной) оси, а для машин требует и межосевого дифференциала. Если межосевого дифференциала нет — полный привод ненастоящий и не может называться постоянным.

Принцип действия «открытого» дифференциала

Простейшим типом дифференциала является т.н. «открытый» дифференциал . Его задачей является распределение момента между механически связанными колесами так, чтобы каждое колесо вращалось с максимально возможной скоростью. При этом, если одно из колёс теряет опору на твердую поверхность (например, проваливается в снег или яму), то весь момент передается именно на него и оно вращается впустую, а второе, стоящее на твердой опоре, остается неподвижным и не способно сдвинуть автомобиль с места.

Почему так происходит?

Планетарный механизм дифференциала (в данном случае — симметричного, т.е. рассчитанного на передачу равного момента на оба колеса) вращает шестерни полуосей через сателлиты. Сателлит передает равный крутящий момент одновременно на обе полуоси, так как является рычагом с равными плечами относительно собственной оси вращения, через которую сателлит и получает тяговое усилие от чашки дифференциала.


1 - шестерни полуосей; 2,3 - ведомая и ведущая шестерня главной передачи; 4 - сателлиты; 5 - корпус.

При прямолинейном движении с хорошим дорожным сцеплением обоих колес, сателлиты не вращаются вокруг своей оси и передают максимальный крутящий момент с чашки дифференциала на полуоси. Чашка дифференциала, планетарный механизм и полуоси вращаются с равной угловой скоростью как единое целое.

При повороте автомобиля, сателлиты начинают поворачиваться вокруг своей оси, приводя в действие планетарный механизм и обеспечивая разницу в угловых скоростях полуосей, однако продолжают передавать оптимальный крутящий момент на обе полуоси, так как дорожное сцепление обоих колёс остается высоким.

Как только одно из колес начинает терять сцепление с дорогой, усилие, необходимое для его вращения, сразу снижается, и крутящий момент на его полуоси падает. Так как сателлиты могут свободно вращаться вокруг своей оси, уравнивая тем самым крутящий момент на обеих полуосевых шестернях, крутящий момент упадет и на полуоси колеса с хорошим дорожным сцеплением, а так же и на чашке дифференциала, и на всей трансмиссии в целом. В этой ситуации упавшего крутящего момента уже недостаточно для вращения колеса с хорошим дорожным сцеплением, зато вполне достаточно для вращения «свободного» колеса, которое и продолжает вращаться (буксует) благодаря осевому вращению сателлитов. При этом планетарный механизм выполняет роль редуктора, увеличивающего угловую скорость вращения буксующего колеса. В результате, колесо с хорошим дорожным сцеплением останавливается (как и авто в целом), а буксующее колесо вращается с удвоенной угловой скоростью относительно угловой скорости чашки дифференциала. При этом суммарное усилие (крутящий момент) падает на всей трансмиссии, и двигатель работает практически без нагрузки.

Помимо проблем с проходимостью, «открытый» межколёсный дифференциал несет в себе существенные риски управляемости под тягой, т.к. по мере появления под тем или иным ведущим колесом участков с низким коэффициентом сцепления (лед, грязь, вода, песок) вся тяга будет немедленно перебрасываться именно на это колесо, и машину будет резко (часто непредсказуемо) бросать в сторону. К слову — именно на устранение этого отвратительного и опасного явления направлен постоянный полный привод (full-time 4WD) на обычных дорожных машинах.

Блокируемые дифференциалы

В борьбе с бесполезным вращением незагруженного колеса (оси) техническая мысль шла следующими принципиальными путями:

  • блокировать дифференциал вручную, в том числе с использованием дистанционного привода (в настоящее время применяется только на дешевых и морально устаревших машинах, либо крайне редко на специальных машинах для сверхтяжелых условий эксплуатации);
  • блокировать дифференциал автоматически, в том числе с переменным усилием блокировки (в эту же категорию попадают так называемые «самоблоки», они же «дифференциалы повышенного трения», «LSD»);
  • притормаживать свободные колеса с помощью штатных тормозных механизмов (электронно по датчикам ABS).

Перечисленные решения часто применяются в синтезе. Так, на тяжелых полноприводных внедорожниках Mercedes и Toyota применяются и жесткие ручные межколесные блокировки, и автоматическая + принудительная ручная межосевые блокировки, и подтормаживание колес электроникой. Рассмотрим эти решения подробнее.

Дифференциалы с полной ручной (принудительной) блокировкой

Дифференциалы с полной принудительной блокировкой фактически имеют только два состояния — распущенное (свободное) и заблокированное. При блокировке дифференциал превращается в простую муфту, жестко связывающую полуоси (или карданы) между собой и постоянно передающую вращение с равной угловой скоростью.

Блокировка достигается либо блокировкой возможности осевого вращения сателлитов, либо жестким соединением между собой чашки дифференциала с одной из полуосей. При этом планетарный механизм блокирован и не распределяет крутящий момент по осям. Передаваемые на полуоси крутящие моменты зависят непосредственно от сцепления каждого из колес с дорогой.

Ниже изображена схема блокировки компании ARB для мостового дифференциала, в которой сателлиты блокируются дистанционным приводом. В основном в таких дифференциалах используются пневматические, электрические, гидравлические или механические приводы. Данный тип блокировки применяется как для мостовых, так и для межосевых дифференциалов.

Ввиду того, что полностью блокированный дифференциал не распределяет полученный крутящий момент поровну между осями, в случае резкой потери сцепления одного из колес, передаваемый крутящий момент на полуоси колеса с хорошим сцеплением также резко возрастет. Поэтому пользоваться такими блокировками надо аккуратно, т.к. усилия мотора может вполне хватить для того, чтобы «сорвать» механизм блокировки или поломать полуось. Применять такие блокировки желательно только на небольших скоростях для передвижения по труднопроходимой местности, так как при их применении в мостах (особенно в рулевых) автомобиль очень сильно теряет в управляемости. Включать такие блокировки можно только на неподвижном автомобиле.

Кулачковые и зубчатые автоматические блокировки

В таких блокировках вместо классического шестерёнчатого планетарного механизма используются кулачковые или зубчатые пары, которые при небольшой разнице в угловых скоростях полуосей имеют возможность взаимно проворачиваться (перескакивать), а при пробуксовке заклиниваются и блокируют полуоси друг с другом. Поскольку такие блокировки срабатывают очень резко, а также способны выдерживать очень большую нагрузку, их в основном ставят на военную и специальную технику. На некоторых моделях таких дифференциалов реализовано отключение одной из полуосей в момент возникновения небольшой разницы скоростей (за счет использования обгонных муфт).

Блокировка Detroit E-Z Locker (компания Tractech):


Блокировка Detroit Locker:


Кулачковая блокировка БТР-60:


Дифференциалы повышенного трения (LSD)

Limited Slip Differentials — дифференциалы с ограниченным «забеганием» (дословно — «проскальзыванием») забегающей полуоси относительно отстающей, они же самоблокирующиеся дифференциалы («самоблоки») и дифференциалы повышенного трения . Чем выше внутреннее трение в дифференциале, тем выше коэффициент его блокировки – т.е. тем больше крутящего момента дифференциал может перераспределить в пользу небуксующего колеса. По принципу действия самоблоки можно подразделить на два основных типа:

  • speed sensitive – срабатывающих при возникновении разницы в угловых скоростях вращения полуосей;
  • torque sensitive – срабатывающих при падении усилия (крутящего момента) на одной из полуосей.

Данные дифференциалы очень популярны в автоспорте и часто устанавливаются штатно в качестве как межосевых, так и межколесных дифференциалов (например, у Toyota — легковые автомобили Supra, Celica, Rav4, Lexus IS300, внедорожники Hilux Surf, Land-Cruiser, Lexus GX470, автобусы Coaster Mini-Bus). Они не требуют применения специальных присадок к маслу (в отличии от friction-based LSD), однако в них лучше использовать качественное масло для нагруженных гипоидных передач.

«Электронные» блокировки — системы контроля тормозных усилий

Идея данных систем крайне проста. Раз все машины всё равно в обязательном порядке оснащены системой ABS, которая контролирует с высокой точностью вращение каждого колеса, то почему бы не поручить штатной тормозной системе выборочно подтормаживать колеса, имитируя «настоящие» дифференциальные блокировки. Теоретически, в этом случае можно ограничиться обычными свободными дифференциалами, а работу сложных блокировок возьмет на себя электроника и тормозные механизмы.

На практике вышло несколько сложнее. Обычные тормозные механизмы недостаточно эффективны для самостоятельного сдерживания колес автомобиля в тяжелых внедорожных условиях, быстро изнашиваются и перегреваются от такой нагрузки. Поэтому после периода первоначальных экспериментов (Mercedes ML, BMW X5) роль «электронных блокировок» свели к вспомогательной — т.е. дополнительной, «тонкой» блокировке при имеющихся обычных блокируемых дифференциалах.